整數劃分問題

2021-06-11 16:20:38 字數 1068 閱讀 9980

首先是遞迴解法

整數劃分問題是將乙個正整數n拆成一組數連加並等於n的形式,且這組數中的最大加數不大於n。

如6的整數劃分為

65 + 1

4 + 2, 4 + 1 + 1

3 + 3, 3 + 2 + 1, 3 + 1 + 1 + 1

2 + 2 + 2, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1

共11種。下面介紹一種通過遞迴方法得到乙個正整數的劃分數。

遞迴函式的宣告為 int split(int n, int m);其中n為要劃分的正整數,m是劃分中的最大加數(當m > n時,最大加數為n),

1 當n = 1或m = 1時,split的值為1,可根據上例看出,只有乙個劃分1 或 1 + 1 + 1 + 1 + 1 + 1

可用程式表示為if(n == 1 || m == 1) return 1;

2 下面看一看m 和 n的關係。它們有三種關係

(1) m > n

在整數劃分中實際上最大加數不能大於n,因此在這種情況可以等價為split(n, n);

可用程式表示為if(m > n) return split(n, n);   

(2) m = n

這種情況可用遞迴表示為split(n, m - 1) + 1,從以上例子中可以看出,就是最大加

數為6和小於6的劃分之和

用程式表示為if(m == n) return (split(n, m - 1) + 1);

(3) m < n

這是最一般的情況,在劃分的大多數時都是這種情況。

從上例可以看出,設m = 4,那split(6, 4)的值是最大加數小於4劃分數和整數2的劃分數的和。

因此,split(n, m)可表示為split(n, m - 1) + split(n - m, m)

根據以上描述,可得源程式如下:

#include 

<

stdio.h

>

intsplit(

intn, 

intm)

intmain()

整數劃分問題

整數劃分問題是乙個經典問題,幾乎在講演算法設計的書中都會講,下面把主要的思想給總結下。所謂整數劃分,就是將乙個正整數n劃分為一系列的正整數之和,如將n可以劃分為 1 我們該如何找出所有的劃分呢?我們可以先來看看整數劃分的規律 譬如正整數 6 劃分情況如下 6 5 14 2 4 1 1 3 3 3 2...

整數劃分問題

給定乙個自然數,分成k部分,a1,a2.的數的和,要求a1 a2.求有多少種?原理 整數n拆分成最多不超過m個數的和的拆分數,和n 拆分成最大不超過m的拆分數相等。根據這個原理,原問題就轉化成了求最大拆分為k的拆分個數與最大拆分為k 1的拆分個數的差 f n,k f n,k 1 f n k,k 如下...

整數劃分問題

整數劃分問題 數 n 的劃分是將 n 表示成多個正整數之和的形式 劃分可以分為兩種情況 a 劃分的多個正整數中,正整數的數量是任意的 這又可以分為劃分的正整數中,正整數可以相同與不同兩類 1.劃分的多個正整數可以相同,遞推方程可以表示為 1 dp n m dp n m 1 dp n m m dp n...