快速傅氏變換之旅 一 概念簡介 1

2021-06-05 11:00:51 字數 3363 閱讀 5844

fft(fast fourier transformation),即為快速傅氏變換,是離散傅氏變換的快速演算法,它是根據離散傅氏變換的奇、偶、虛、實等特性,對離散傅利葉變換的演算法進行改進獲得的。它對傅氏變換的理論並沒有新的發現,但是對於在計算機系統或者說數字系統

中應用離散傅利葉變換,可以說是進了一大步。

設x(n)為n項的複數

序列,由dft變換,任一x(m)的計算都需要n次複數乘法和n-1次複數加法,而一次複數乘法等於四次

實數乘法和兩次實數加法,一次複數加法等於兩次實數加法,即使把一次複數乘法和一次複數加法定義成一次「運算」(四次實數乘法和四次實數加法),那麼求出n項複數序列的x(m),即n點dft變換大約就需要n2次運算。當n=1024點甚至更多的時候,需要n2=1048576次運算,在fft中,利用wn的週期性和對稱性,把乙個n項序列(設n=2k,k為正整數),分為兩個n/2項的子串行,每個n/2點dft變換需要(n/2)2次運算,再用n次運算把兩個n/2點的dft變換組合成乙個n點的dft變換。這樣變換以後,總的運算次數就變成n 2(n/2)2=n n2/2。繼續上面的例子,n=1024時,總的運算次數就變成了525312次,節省了大約50%的運算量。而如果我們將這種「一分為二」的思想不斷進行下去,直到分成兩兩一組的dft運算單元,那麼n點的dft變換就只需要nlog2n次的運算,n在1024點時,運算量僅有10240次,是先前的直接演算法的1%,點數越多,運算量的節約就越大,這就是fft的優越性。

乙個模擬訊號,經過adc取樣之後,就變成了數碼訊號。取樣定理告訴我們,取樣頻率要大於訊號頻率的兩倍,這些我就不在此羅嗦了。  

取樣得到的數碼訊號,就可以做fft變換了。n個取樣點,經過fft之後,就可以得到n個點的fft結果。為了方便進行fft運算,通常n取2的整數次方。  

假設取樣頻率為fs,訊號頻率f,取樣點數為n。那麼fft之後結果就是乙個為n點的複數。每乙個點就對應著乙個頻率點。

這個點的模值,就是該頻率值下的幅度特性。具體跟原始訊號的幅度有什麼關係呢?假設原始訊號的峰值為a,那麼fft的結果的每個點(除了第乙個點直流分量之外)的模值就是a的n/2倍。而第乙個點就是直流分量,它的模值就是直流分量的n倍。而每個點的相位呢,就是在該頻率下的訊號的相位。第乙個點表示直流分量(即0hz),而最後乙個點n的再下乙個點(實際上這個點是不存在的,這裡是假設的第n+1個點,可以看做是將第乙個點分做兩半分,另一半移到最後)則表示取樣頻率fs,這中間被n-1個點平均分成n等份,每個點的頻率依次增加。例如某點n所表示的頻率為:fn =(n-1)*fs/n。

由上面的公式可以看出,fn所能分辨到頻率為 fs/n,如果取樣頻率fs為1024hz,取樣點數為1024點,則可以分辨到1hz。1024hz的取樣率取樣1024點,剛好是1秒,也就是說,取樣1秒時間的訊號並做fft,則結果可以分析到1hz,如果取樣2秒時間的訊號並做fft,則結果可以分析到0.5hz。如果要提高頻率分辨力,則必須增加取樣點數,也即取樣時間。

頻率解析度和取樣時間是倒數關係。假設fft之後某點n用複數a+bi表示,那麼這個複數的模就是an=根號a*a+b*b,相位就是pn=atan2(b,a)。根據以上的結果,就可以計算出n點(n≠1,且n<=n/2)對應的訊號的表示式為:an/(n/2)*cos(2*pi*fn*t+pn),即2*an/n*cos(2*pi*fn*t+pn)。對於n=1點的訊號,是直流分量,幅度即為a1/n。由於fft結果的對稱性,通常我們只使用前半部分的結果,即小於取樣頻率一半的結果。  

好了,說了半天,看著公式也暈,下面以乙個實際的訊號來做說明。

假設我們有乙個訊號,它含有2v的直流分量,頻率為50hz、相位為-30度、幅度為3v的交流訊號,以及乙個頻率為75hz、相位為90度、幅度為1.5v的交流訊號。用數學表示式就是如下:

s=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)  

式中cos引數為弧度,所以-30度和90度要分別換算成弧度。我們以256hz的取樣率對這個訊號進行取樣,總共取樣256點。按照我們上面的分析,fn=(n-1)*fs/n,我們可以知道,每兩個點之間的間距就是1hz,第n個點的頻率就是n-1。我們的訊號有3個頻率:0hz、50hz、75hz,應該分別在第1個點、第51個點、第76個點上出現峰值,其它各點應該接近0。實際情況如何呢?

從圖中我們可以看到,在第1點、第51點、和第76點附近有比較大的值。我們分別將這三個點附近的資料拿上來細看:

1點: 512+0i

2點: -2.6195e-14 - 1.4162e-13i  

3點: -2.8586e-14 - 1.1898e-13i  

50點:-6.2076e-13 - 2.1713e-12i

51點:332.55 - 192i

52點:-1.6707e-12 - 1.5241e-12i  

75點:-2.2199e-13 -1.0076e-12i

76點:3.4315e-12 + 192i

77點:-3.0263e-14 +7.5609e-13i

很明顯,1點、51點、76點的值都比較大,它附近的點值都很小,可以認為是0,即在那些頻率點上的訊號幅度為0。接著,我們來計算各點的幅度值。分別計算這三個點的模值,

結果如下:

1點: 512

51點:384

76點:192

按照公式,可以計算出直流分量為:512/n=512/256=2;50hz訊號的幅度為:384/(n/2)=384/(256/2)=3;75hz訊號的幅度為192/(n/2)=192/(256/2)=1.5。可見,從頻譜分析出來的幅度是正確的。

然後再來計算相位資訊。直流訊號沒有相位可言,不用管它。先計算50hz訊號的相位,atan2(-192, 332.55)=-0.5236,結果是弧度,換算為角度就是180*(-0.5236)/pi=-30.0001。再計算75hz訊號的相位,atan2(192, 3.4315e-12)=1.5708弧度,換算成角度180*1.5708/pi=90.0002。可見,相位也是對的。

根據fft結果以及上面的分析計算,我們就可以寫出訊號的表示式了,它就是我們開始提供的訊號。  

總結:假設取樣頻率為fs,取樣點數為n,做fft之後,某一點n(n從1開始)表示的頻率為:fn=(n-1)*fs/n;該點的模值除以n/2就是對應該頻率下的訊號的幅度(對於直流訊號是除以n);該點的相位即是對應該頻率下的訊號的相位。相位的計算可用函式atan2(b,a)計算。atan2(b,a)是求座標為(a,b)點的角度值,範圍從-pi到pi。要精確到xhz,則需要取樣長度為1/x秒的訊號,並做fft。要提高頻率解析度,就需要增加取樣點數,這在一些實際的應用中是不現實的,需要在較短的時間內完成分析。解決這個問題的方法有頻率細分法,比較簡單的方法是取樣比較短時間的訊號,然後在後面補充一定數量的0,使其長度達到需要的點數,再做fft,這在一定程度上能夠提高頻率分辨力。

關於FFT快速傅氏變換的理解

fft fast fourier transformation 是離散傅氏變換 dft 的快速演算法。即為快速傅氏變換。傅利葉變換大致有四種型別 1 連續傅利葉變換 ft 2 連續傅利葉級數 fs 3 離散時間傅利葉變換 dtft 4 離散傅利葉級數 dfs 這裡主要講解離散時間傅利葉變換中的一種快...

傅麗葉變換(一)

傅麗葉變換 二 數字影象處理的方法主要分為兩大類 乙個是空間域處理法 或稱空域法 乙個是頻域法 或稱變換域法 在頻域法處理中最為關鍵的預處理便是變換處理。目前,在影象處理技術中正交變換被廣泛地運用於影象特徵提取 影象增強 影象復原 影象識別以及影象編碼等處理中。傅利葉變換是大家所熟知的正交變換。在一...

matlab 快速傅利葉反變換函式(ifft)編寫

歡迎指正 matlab 編寫快速傅利葉反變換函式 ifft 橫向讀取資料進行變換 matlab 快速傅利葉逆變換,不夠2的整數冪的個數,末尾自動補齊0 function ret val myifft vector 因為輸入的資料可能不是2的整數次冪,補零使得計算更加方便 m,n size vecto...