c c 語言變數宣告記憶體分配

2021-05-23 08:25:49 字數 4804 閱讀 8381

乙個由c/c++編譯的程式占用的記憶體分為以下幾個部分

1、棧區(stack)— 程式執行時由編譯器自動分配,存放函式的引數值,區域性變數的值等。其操作方式類似於資料結構中的棧。程式結束時由編譯器自動釋放。

2、堆區(heap) — 在記憶體開闢另一塊儲存區域。一般由程式設計師分配釋放, 若程式設計師不釋放,程式結束時可能由os** 。注意它與資料結構中的堆是兩回事,分配方式倒是類似於鍊錶,呵呵。

3、全域性區(靜態區)(static)—編譯器編譯時即分配記憶體。全域性變數和靜態變數的儲存是放在一塊的,初始化的全域性變數和靜態變數在一塊區域, 未初始化的全域性變數和未初始化的靜態變數在相鄰的另一塊區域。 - 程式結束後由系統釋放

4、文字常量區 —常量字串就是放在這裡的。 程式結束後由系統釋放

5、程式**區—存放函式體的二進位制**。

例子程式

這是乙個前輩寫的,非常詳細

//main.cpp

int a = 0; 全域性初始化區

char *p1; 全域性未初始化區

main()

***************

c語言程式的記憶體分配方式

1.記憶體分配方式

記憶體分配方式有三種:

[1]從靜態儲存區域分配。內存在程式編譯的時候就已經分配好,這塊內存在程式的整個執行期間都存在。例如全域性變數,static變數。

[2]在棧上建立。在執行函式時,函式內區域性變數的儲存單元都可以在棧上建立,函式執行結束時這些儲存單元自動被釋放。棧記憶體分配運算內置於處理器的指令集中,效率很高,但是分配的記憶體容量有限。

[3]從堆上分配,亦稱動態記憶體分配。程式在執行的時候用malloc或new申請任意多少的記憶體,程式設計師自己負責在何時用free或delete釋放記憶體。動態記憶體的生存期由程式設計師決定,使用非常靈活,但如果在堆上分配了空間,就有責任**它,否則執行的程式會出現記憶體洩漏,頻繁地分配和釋放不同大小的堆空間將會產生堆內碎塊。

2.程式的記憶體空間

乙個程式將作業系統分配給其執行的記憶體塊分為4個區域,如下圖所示。

乙個由c/c++編譯的程式占用的記憶體分為以下幾個部分,

1、棧區(stack)—  由編譯器自動分配釋放 ,存放為執行函式而分配的區域性變數、函式引數、返回資料、返回位址等。其操作方式類似於資料結構中的棧。

2、堆區(heap) —  一般由程式設計師分配釋放, 若程式設計師不釋放,程式結束時可能由os** 。分配方式類似於鍊錶。

3、全域性區(靜態區)(static)—存放全域性變數、靜態資料、常量。程式結束後由系統釋放。

4、文字常量區 —常量字串就是放在這裡的。 程式結束後由系統釋放。

5、程式**區—存放函式體(類成員函式和全域性函式)的二進位制**。

下面給出例子程式,

int a = 0; //全域性初始化區

char *p1; //全域性未初始化區

int main()

3.堆與棧的比較

3.1申請方式

stack: 由系統自動分配。 例如,宣告在函式中乙個區域性變數 int b; 系統自動在棧中為b開闢空間。

heap: 需要程式設計師自己申請,並指明大小,在c中malloc函式,c++中是new運算子。

如p1 = (char *)malloc(10); p1 = new char[10];

如p2 = (char *)malloc(10); p2 = new char[20];

但是注意p1、p2本身是在棧中的。

3.2申請後系統的響應

棧:只要棧的剩餘空間大於所申請空間,系統將為程式提供記憶體,否則將報異常提示棧溢位。

堆:首先應該知道作業系統有乙個記錄空閒記憶體位址的鍊錶,當系統收到程式的申請時,會遍歷該鍊錶,尋找第乙個空間大於所申請空間的堆結點,然後將該結點從空閒結點鍊錶中刪除,並將該結點的空間分配給程式。

對於大多數系統,會在這塊記憶體空間中的首位址處記錄本次分配的大小,這樣,**中的delete語句才能正確的釋放本記憶體空間。

由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多餘的那部分重新放入空閒鍊錶中。

3.3申請大小的限制

棧:在windows下,棧是向低位址擴充套件的資料結構,是一塊連續的記憶體的區域。這句話的意思是棧頂的位址和棧的最大容量是系統預先規定好的,在 windows下,棧的大小是2m(也有的說是1m,總之是乙個編譯時就確定的常數),如果申請的空間超過棧的剩餘空間時,將提示overflow。因 此,能從棧獲得的空間較小。

堆:堆是向高位址擴充套件的資料結構,是不連續的記憶體區域。這是由於系統是用鍊錶來儲存的空閒記憶體位址的,自然是不連續的,而鍊錶的遍歷方向是由低位址向高位址。堆的大小受限於計算機系統中有效的虛擬記憶體。由此可見,堆獲得的空間比較靈活,也比較大。

3.4申請效率的比較

棧由系統自動分配,速度較快。但程式設計師是無法控制的。

堆是由new分配的記憶體,一般速度比較慢,而且容易產生記憶體碎片,不過用起來最方便。

另外,在windows下,最好的方式是用virtualalloc分配記憶體,他不是在堆,也不是棧,而是直接在程序的位址空間中保留一快記憶體,雖然用起來最不方便。但是速度快,也最靈活。

3.5堆和棧中的儲存內容

棧:在函式呼叫時,第乙個進棧的是主函式中後的下一條指令(函式呼叫語句的下一條可執行語句)的位址,然後是函式的各個引數,在大多數的c編譯器中,引數是由右往左入棧的,然後是函式中的區域性變數。注意靜態變數是不入棧的。

當本次函式呼叫結束後,區域性變數先出棧,然後是引數,最後棧頂指標指向最開始存的位址,也就是主函式中的下一條指令,程式由該點繼續執行。

堆:一般是在堆的頭部用乙個位元組存放堆的大小。堆中的具體內容有程式設計師安排。

3.6訪問效率的比較

char s1 = "a";

char *s2 = "b";

a是在執行時刻賦值的;而b是在編譯時就確定的;但是,在以後的訪問中,在棧上的陣列比指標所指向的字串(例如堆)快。 比如:

int main()

對應的彙編**

10: a = c[1];

00401067 8a 4d f1 mov cl,byte ptr [ebp-0fh]

0040106a 88 4d fc mov byte ptr [ebp-4],cl

11: a = p[1];

0040106d 8b 55 ec mov edx,dword ptr [ebp-14h]

00401070 8a 42 01 mov al,byte ptr [edx+1]

00401073 88 45 fc mov byte ptr [ebp-4],al

第一種在讀取時直接就把字串中的元素讀到暫存器cl中,而第二種則要先把指標值讀到edx中,再根據edx讀取字元,顯然慢了。

3.7小結

堆和棧的主要區別由以下幾點:

1、管理方式不同;

2、空間大小不同;

3、能否產生碎片不同;

4、生長方向不同;

5、分配方式不同;

6、分配效率不同;

管理方式:對於棧來講,是由編譯器自動管理,無需我們手工控制;對於堆來說,釋放工作由程式設計師控制,容易產生memory leak。

空間大小:一般來講在32位系統下,堆記憶體可以達到4g的空間,從這個角度來看堆記憶體幾乎是沒有什麼限制的。但是對於棧來講,一般都是有一定的空間大小的,例如,在vc6下面,預設的棧空間大小是1m。當然,這個值可以修改。

碎片問題:對於堆來講,頻繁的new/delete勢必會造成記憶體空間的不連續,從而造成大量的碎片,使程式效率降低。對於棧來講,則不會存在這個問題,因為棧是先進後出的佇列,他們是如此的一一對應,以至於永遠都不可能有乙個記憶體塊從棧中間彈出,在他彈出之前,在他上面的後進的棧內容已經被彈出,詳細的可以參考資料結構。

生長方向:對於堆來講,生長方向是向上的,也就是向著記憶體位址增加的方向;對於棧來講,它的生長方向是向下的,是向著記憶體位址減小的方向增長。

分配方式:堆都是動態分配的,沒有靜態分配的堆。棧有2種分配方式:靜態分配和動態分配。靜態分配是編譯器完成的,比如區域性變數的分配。動態分配由malloca函式進行分配,但是棧的動態分配和堆是不同的,他的動態分配是由編譯器進行釋放,無需我們手工實現。

分配效率:棧是機器系統提供的資料結構,計算機會在底層對棧提供支援:分配專門的暫存器存放棧的位址,壓棧出棧都有專門的指令執行,這就決定了棧的效率比較高。堆則是c/c++函式庫提供的,它的機制是很複雜的,例如為了分配一塊記憶體,庫函式會按照一定的演算法(具體的演算法可以參考資料結構/作業系統)在堆記憶體中搜尋可用的足夠大小的空間,如果沒有足夠大小的空間(可能是由於記憶體碎片太多),就有可能呼叫系統功能去增加程式資料段的記憶體空間,這樣就有機會分 到足夠大小的記憶體,然後進行返回。顯然,堆的效率比棧要低得多。

從這裡我們可以看到,堆和棧相比,由於大量new/delete的使用,容易造成大量的記憶體碎片;由於沒有專門的系統支援,效率很低;由於可能引發使用者態和核心態的切換,記憶體的申請,代價變得更加昂貴。所以棧在程式中是應用最廣泛的,就算是函式的呼叫也利用棧去完成,函式呼叫過程中的引數,返回位址, ebp和區域性變數都採用棧的方式存放。所以,我們推薦大家盡量用棧,而不是用堆。

雖然棧有如此眾多的好處,但是由於和堆相比不是那麼靈活,有時候分配大量的記憶體空間,還是用堆好一些。

無論是堆還是棧,都要防止越界現象的發生(除非你是故意使其越界),因為越界的結果要麼是程式崩潰,要麼是摧毀程式的堆、棧結構,產生以想不到的結果。

4.new/delete與malloc/free比較

從c++角度上說,使用new分配堆空間可以呼叫類的建構函式,而malloc()函式僅僅是乙個函式呼叫,它不會呼叫建構函式,它所接受的引數是乙個unsigned long型別。同樣,delete在釋放堆空間之前會呼叫析構函式,而free函式則不會。

class time{

public:

time(int,int,int,string);

~time(){

cout<<"call time』s destructor by:"<

c c 變數記憶體分配區域

乙個由c c 編譯的程式占用的記憶體分為以下幾個部分 1 棧區 stack 由編譯器自動分配釋放 存放函式的引數值,區域性變數的值等。其操作方式類似於資料結構中的棧。2 堆區 heap 一般由程式設計師分配釋放,若程式設計師不釋放,程式結束時可能由os 注意它與資料結構中的堆是兩回事,分配方式倒是類...

C C 語言之記憶體分配

一.理論 乙個由c c 編譯的程式占用的記憶體分為以下幾個部分 1 棧區 stack 由編譯器自動分配釋放 存放函式的引數值,區域性變數的值等。其操作方式類似於資料結構中的棧。2 堆區 heap 一般由程式設計師分配釋放,c語言中對應的主要函式有malloc 和free c 中是new和delete...

C C 記憶體分配

1 c c 記憶體分配 1 棧區 由編譯器自動分配和釋放,存放函式的引數值,區域性變數的值等。其操作方式類似於資料結構中的棧。2 堆區 一般由程式設計師分配和釋放,若程式設計師不釋放,程式結束時可能由os 注意它與資料結構中的堆是兩回事。3 全域性 靜態 資料區 全域性變數和靜態變數的儲存是放在一塊...