kruskal演算法是一種用來尋找最小生成樹的演算法,由joseph kruskal在2023年發表。用來解決同樣問題的還有prim演算法和boruvka演算法等。三種演算法都是貪婪演算法的應用。和boruvka演算法不同的地方是,kruskal演算法在圖中存在相同權值的邊時也有效。
kruskal演算法每次選擇n- 1條邊,所使用的貪婪準則是:從剩下的邊中選擇一條不會產生環路的具有最小耗費的邊加入已選擇的邊的集合中。注意到所選取的邊若產生環路則不可能形成一棵生成樹。kruskal演算法分e 步,其中e 是網路中邊的數目。按耗費遞增的順序來考慮這e 條邊,每次考慮一條邊。當考慮某條邊時,若將其加入到已選邊的集合中會出現環路,則將其拋棄,否則,將它選入。
步驟1.新建圖g,g中擁有原圖中相同的節點,但沒有邊
2.將原圖中所有的邊按權值從小到大排序
3.從權值最小的邊開始,如果這條邊連線的兩個節點於圖g中不在同乙個連通分量中,則新增這條邊到圖g中
4.重複3,直至圖g中所有的節點都在同乙個連通分量中
克魯斯卡爾演算法
測試輸入包含若干測試用例。每個測試用例的第1行給出評估的道路條數 n 村莊數目m 100 隨後的 n 行對應村莊間道路的成本,每行給出一對正整數,分別是兩個村莊的編號,以及此兩村莊間道路的成本 也是正整數 為簡單起見,村莊從1到m編號。當n為0時,全部輸入結束,相應的結果不要輸出。對每個測試用例,在...
克魯斯卡爾演算法
設n v,是連通網 1 令最小生成樹的初始狀態為只有n個頂點而無邊的非連通圖t v,圖中每個頂點自成乙個連通分量 2 在e中選擇代價最小的邊,若該邊依附的頂點落在t中不同的連通分量上,則將此邊加入到t中,否則捨去此邊而選擇下一條代價最小的邊 3 反覆執行第2 步,直至t中所有頂點都在同一連通分量上為...
克魯斯卡爾演算法
via 克魯斯卡爾演算法 在連通網中求出最小生成樹 include include define maxedge 20 define maxvex 20 define infinity 65535 typedef struct mgraph typedef struct edge 對邊集陣列edge...