約瑟夫問題(有時也稱為約瑟夫斯置換,是乙個出現在電腦科學和數學中的問題。在計算機程式設計的演算法中,類似問題又稱為約瑟夫環。又稱「丟手絹問題」.)據說著名猶太歷史學家 josephus有過以下的故事:在羅馬人占領喬塔帕特後,39 個猶太人與josephus及他的朋友躲到乙個洞中,39個猶太人決定寧願死也不要被敵人抓到,於是決定了乙個自殺方式,41個人排成乙個圓圈,由第1個人開始報數,每報數到第3人該人就必須自殺,然後再由下乙個重新報數,直到所有人都自殺身亡為止。然而josephus 和他的朋友並不想遵從。首先從乙個人開始,越過k-2個人(因為第乙個人已經被越過),並殺掉第k個人。接著,再越過k-1個人,並殺掉第k個人。這個過程沿著圓圈一直進行,直到最終只剩下乙個人留下,這個人就可以繼續活著。問題是,給定了和,一開始要站在什麼地方才能避免被處決?josephus要他的朋友先假裝遵從,他將朋友與自己安排在第16個與第31個位置,於是逃過了這場死亡遊戲。
17世紀的法國數學家加斯帕在《數目的遊戲問題》中講了這樣乙個故事:15個教徒和15 個非教徒在深海上遇險,必須將一半的人投入海中,其餘的人才能倖免於難,於是想了乙個辦法:30個人圍成一圓圈,從第乙個人開始依次報數,每數到第九個人就將他扔入大海,如此迴圈進行直到僅餘15個人為止。問怎樣排法,才能使每次投入大海的都是非教徒。
約瑟夫問題並不難,但求解的方法很多;題目的變化形式也很多。這裡給出一種實現方法。
題目中30個人圍成一圈,因而啟發我們用乙個迴圈的鏈來表示,可以使用結構陣列來構成乙個迴圈鏈。結構中有兩個成員,其一為指向下乙個人的指標,以構成環形的鏈;其二為該人是否被扔下海的標記,為1表示還在船上。從第乙個人開始對還未扔下海的人進行計數,每數到9時,將結構中的標記改為0,表示該人已被扔下海了。這樣迴圈計數直到有15個人被扔下海為止。
約瑟夫問題是個有名的問題:n個人圍成一圈,從第乙個開始報數,第m個將被殺掉,最後剩下乙個,其餘人都將被殺掉。例如n=6,m=5,被殺掉的順序是:5,4,6,2,3,1。
分析:(1)由於對於每個人只有死和活兩種狀態,因此可以用布林型陣列標記每個人的狀態,可用true表示死,false表示活。
(2)開始時每個人都是活的,所以陣列初值全部賦為false。
(3)模擬殺人過程,直到所有人都被殺死為止。
無論是用鍊錶實現還是用陣列實現都有乙個共同點:要模擬整個遊戲過程,不僅程式寫起來比較煩,而且時間複雜度高達o(nm),當n,m非常大(例如上百萬,上千萬)的時候,幾乎是沒有辦法在短時間內出結果的。我們注意到原問題僅僅是要求出最後的勝利者的序號,而不是要讀者模擬整個過程。因此如果要追求效率,就要打破常規,實施一點數學策略。
為了討論方便,先把問題稍微改變一下,並不影響原意:
問題描述:n個人(編號0~(n-1)),從0開始報數,報到(m-1)的退出,剩下的人繼續從0開始報數。求勝利者的編號。
我們知道第乙個人(編號一定是(m-1)mod n) 出列之後,剩下的n-1個人組成了乙個新的約瑟夫環(以編號為k=m mod n的人開始):
k k+1 k+2 ... n-2,n-1,0,1,2,... k-2並且從k開始報0。
我們把他們的編號做一下轉換:
k --> 0
k+1 --> 1
k+2 --> 2
......
k-2 --> n-2
變換後就完完全全成為了(n-1)個人報數的子問題,假如我們知道這個子問題的解:例如x是最終的勝利者,那麼根據上面這個表把這個x變回去不剛好就是n個人況的解嗎?!!變回去的公式很簡單,相信大家都可以推出來:x'=(x+k) mod n
如何知道(n-1)個人報數的問題的解?對,只要知道(n-2)個人的解就行了。(n-2)個人的解呢?當然是先求(n-3)的情況 ---- 這顯然就是乙個倒推問題!好了,思路出來了,下面寫狀態:
令f表示i個人玩遊戲報m退出最後勝利者的編號,最後的結果自然是f[n]
遞推公式
f[1]=0;
f[i]=(f[i-1]+m) mod i; (i>1)
有了這個公式,我們要做的就是從1-n順序算出f的數值,最後結果是f[n]。因為實際生活中編號總是從1開始,我們輸出f[n]+1
由於是逐級遞推,不需要儲存每個f,程式也是異常簡單!
約瑟夫問題 約瑟夫環
約瑟夫 問題 有時也稱為約瑟夫斯置換,是乙個出現在電腦科學和數學中的問題。在計算機程式設計的演算法中,類似問題又稱為約瑟夫環。又稱 丟手絹問題 據說著名猶太歷史學家 josephus有過以下的故事 在羅馬人占領喬塔帕特後,39 個猶太人與josephus及他的朋友躲到乙個洞中,39個猶太人決定寧願死...
約瑟夫問題 約瑟夫環
約瑟夫問題 有時也稱為約瑟夫斯置換,是乙個出現在電腦科學和數學中的問題。在計算機程式設計的演算法中,類似問題又稱為約瑟夫環。又稱 丟手絹問題 據說著名猶太歷史學家 josephus有過以下的故事 在羅馬人占領喬塔帕特後,39 個猶太人與josephus及他的朋友躲到乙個洞中,39個猶太人決定寧願死也...
約瑟夫問題
這是17世紀的法國數學家加斯帕在 數目的遊戲問題 中講的乙個故事 15個教徒和15 個非教徒在深海上遇險,必須將一半的人投入海中,其餘的人才能倖免於難,於是想了乙個辦法 30個人圍成一圓圈,從第乙個人開始依次報數,每數到第九個人就將他扔入大海,如此迴圈進行直到僅餘15個人為止。問怎樣排法,才能使每次...