基準時間限制:1 秒 空間限制:131072 kb 分值: 0 難度:基礎題
收藏關注斐波那契數列的定義如下:
f(0) = 0
f(1) = 1
f(n) = f(n - 1) + f(n - 2) (n >= 2)
(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
給出n,求f(n),由於結果很大,輸出f(n) % 1000000009的結果即可。
input
輸入1個數n(1 <= n <= 10^18)。output
輸出f(n) % 1000000009的結果。input示例
11output示例
89
1 #include 23const
int mod(1000000009);4
#define ll long long
5 inline void read(ll &x)611
ll n;
1213
struct
matrix
25return
tmp;26}
27 }ans,base;28
29int
presist()
3039
40int aptal=presist();
41int main()
斐波那契數
入門訓練 fibonacci數列 時間限制 1.0s 記憶體限制 256.0mb 問題描述 fibonacci數列的遞推公式為 fn fn 1 fn 2,其中f1 f2 1。當n比較大時,fn也非常大,現在我們想知道,fn除以10007的餘數是多少。輸入格式 輸入包含乙個整數n。輸出格式 輸出一行,...
斐波那契數
斐波那契數列 fibonacci sequence 簡介 斐波那契數列 fibonacci sequence 又稱 分割 數列 因 數學家列昂納多 斐波那契 leonardoda fibonacci 以兔子繁殖為例子而引入,故又稱為 兔子數列 指的是這樣乙個數列 1 1 2 3 5 8 13 21 ...
斐波那契數
遞迴演算法是不可取的。由於效率非常低,並且還有棧溢位的風險。應該使用例如以下的迭代解法 int fibonacci unsigned int n if n 1 int i 0,j 1,m unsigned int k for k 2 k n k return m 可是對於這題來說。上面的 還是不行的...