我們已經知道計算機中,所有資料最終都是使用二進位制數表達。
不過,我們仍然沒有學習乙個負數如何用二進位制表達。
比如,假設有一 int 型別的數,值為5,那麼,我們知道它在計算機中表示為:
00000000 00000000 00000000 00000101
5轉換成二制是101,不過vc6中int型別的數占用4位元組(32位),所以前面填了一堆0。
現在想知道,-5在計算機中如何表示?
在計算機中,負數以其正值的補碼形式表達。
什麼叫補碼呢?這得從原碼,反碼說起。
原碼:乙個整數,按照絕對值大小轉換成的二進位制數,稱為原碼。
比如 00000000 00000000 00000000 00000101 是 5的 原碼。
反碼:將二進位制數按位取反,所得的新二進位制數稱為原二進位制數的反碼。
取反操作指:原為1,得0;原為0,得1。(1變0; 0變1)
比如:將00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。
稱:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反碼。
反碼是相互的,所以也可稱:
11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互為反碼。
補碼:反碼加1稱為補碼。
也就是說,要得到乙個數的補碼,先得到反碼,然後將反碼加上1,所得數稱為補碼。
比如:00000000 00000000 00000000 00000101 的反碼是:11111111 11111111 11111111 11111010。
那麼,補碼為:
11111111 11111111 11111111 11111010 + 1 = 11111111 11111111 11111111 11111011
所以,-5 在計算機中表達為:11111111 11111111 11111111 11111011。轉換為十六進製制:0xfffffffb。
再舉一例,我們來看整數-1在計算機中如何表示。
假設這也是乙個int型別,那麼:
1、先取1的原碼:00000000 00000000 00000000 00000001
2、得反碼: 11111111 11111111 11111111 11111110
3、得補碼: 11111111 11111111 11111111 11111111
假設int占用乙個位元組,則可以表示的數值範圍是:-128~127
其中 -128為:
1、先取原碼: 1000 0000
2、得反碼: 0111 1111
3、得補碼: 1000 0000
其中 -1為:
1、先取原碼: 0000 0001
2、得反碼: 1111 1110
3、得補碼: 1111 1111
其中 0為:
1、先取原碼: 0000 0000
其中 127為:
1、先取原碼: 0111 1111
原碼 反碼 補碼
正數 原碼 反碼 補碼一樣 7 原 0 0000111 b 7 反 0 0000111 b 7 補 0 0000111 b 負數 原碼就是原來的表示方法 反碼是除符號位 最高位 外取反 補碼 反碼 1 7 原 1 0000111 b 7 反 1 1111000 b 7 補 1 1111001 b 當...
原碼 反碼 補碼
正數 原碼 反碼 補碼一樣 7 原 0 0000111 b 7 反 0 0000111 b 7 補 0 0000111 b 負數 原碼就是原來的表示方法 反碼是除符號位 最高位 外取反 補碼 反碼 1 7 原 1 0000111 b 7 反 1 1111000 b 7 補 1 1111001 b 當...
原碼 反碼 補碼
數值在計算機中表示形式為機器數 計算機只能識別0和1,使用的是二進位制,而在日常生活中人們使用的 是十進位制,正如亞里斯多德早就指出的那樣,今天十進位制的廣泛採用,只不過我們絕大多數人生來具有10個手 指頭這個解剖學事實的結果.儘管在歷史上手指計數 5,10進製 的實踐要比二或三進製計數出現的晚.摘...