51nod1239 尤拉函式之和

2022-02-27 10:48:07 字數 919 閱讀 6032

對正整數n,尤拉函式是小於或等於n的數中與n互質的數的數目。此函式以其首名研究者尤拉命名,它又稱為euler's totient function、φ函式、尤拉商數等。例如:φ(8) = 4(phi(8) = 4),因為1,3,5,7均和8互質。

s(n) = phi(1) + phi(2) + ...... phi(n),給出n,求s(n),例如:n = 5,s(n) = 1 + 1 + 2 + 2 + 4 = 10,定義phi(1) = 1。由於結果很大,輸出mod 1000000007的結果。

input

輸入乙個數n。(2 <= n <= 10^10)
output

輸出s(n) mod 1000000007的結果。
input示例

5
output示例

10

菜雞只能背結論,證明去tls那裡看啊

#includeusing

namespace

std;

typedef

long

long

ll;const

int n=5000005,md=1e9+7,inv2=500000004

;bool

is_p[n];

intpri[n],phi[n];

inttot;

unordered_map

m;void

init()

phi[i*pri[j]]=phi[i]*(pri[j]-1

); }

}for(int i=1; i1])%md;

}ll cal(ll a)

m[a]=ans;

return

ans;

}int

main()

51nod1239 尤拉函式之和

求 i 1n i n 10 10 這道題和莫比烏斯函式一行,都可以通過神奇的推導的出結論。我們設 n i 1n i 眾所周知,d n d n 那麼,n n d n,d d 於是 n i 1n i d i,d d n n n 1 2 i 2n d i d d n n n 1 2 i d 2n d 1 ...

51nod 1239 尤拉函式之和

求 n i 1 i 1 n 10 杜教篩第二道裸題。必要結論 i n i n 證明 設f n i n i 將n分解質因數,n p qii 利用莫比烏斯函式裡學到的乙個性質,可以得到 f n f pq ii f pq qk 0 pk q k 1p k pk 1 1 p q f n n 設s n n i...

51Nod 1239 尤拉函式之和

acm模版 這個題和那個 51nod 1244 莫比烏斯函式之和 的方法幾乎一模一樣,差別就是推導公式的結果不一樣罷了,但是形式是一樣的。推導如下 設 f n i 1 n i 通過尤拉函式的性質我們可以知道 d n d n 所以呢,n n d n,d d f n i 1n i d i,d d f n...