常見的矩陣形式

2022-01-23 16:32:50 字數 1282 閱讀 9826

前言

記錄經常用到的矩陣形式。

a-正交矩陣定義:一實的正方矩陣q∈rnxn,稱為正交矩陣,若:

b-酉矩陣

定義:一實的正方矩陣u∈cnxn,稱為酉矩陣,若:

c-vandermonde矩陣

定義:具有以下形式的mxn階矩陣:

稱為vandermonde矩陣,其轉置也是vandermonde矩陣。

d-toeplitz矩陣

定義:具有2n-1個元素的n階矩陣

稱為toeplitz矩陣,簡稱t矩陣。

e-hankel矩陣

定義:具有以下形式的n+1階矩陣

稱為hankel矩陣或正交對稱矩陣(orthosymmetric matrix)。

f-hadamard矩陣

定義:hn∈rnxn成為hadamard矩陣,若它的所有元素取+1或者-1,且

g-hermitian矩陣

如果矩陣anxn滿足:

則稱a為hermitian矩陣。

h-符號矩陣(signature matrix)

乙個對焦元素只取+1和-1兩種值的nxn對角矩陣稱為符號矩陣

利用符號矩陣,可以引出j正交矩陣(也成為超正規矩陣):

定義:令j為nxn的符號矩陣,滿足:

的nxn矩陣成為j正交矩陣(j-orthogonal matrix),可以理解為正交矩陣的廣義形式,因為符號矩陣j全取1就是單位矩陣。或稱超正規矩陣(hepernormal matrix)。

最小二乘法解的矩陣形式推導

首先,什麼是最小二乘?維基百科給出了乙個定義,戳這裡 在我看來,最小二乘法是一種資料擬合方法。我們從矩陣的角度來理解 首先我們給出乙個矩陣中的定義 r a a r n n 有了上面的定義之後,我們就可以寫出最小二乘問題的矩陣形式 b r a b rn,minx rn a x b 2 用bi格高一點的...

Python讀取資料檔案轉存成矩陣形式

def file2list filename fr open filename array fr.readlines 以檔案中的每行為乙個元素,形成乙個list列表 num len array returnmat zeros num,3 初始化元素為0的,行號數個列表,其中每個元素仍是列表,元素數是...

泰勒公式矩陣形式 極限求解 泰勒公式理解

泰勒公式,本質上是一種函式的近似,強大之處就在於可以將不同型別的函式,統一用多項式求和的形式進行替換,從而變成多項式的運算。本篇主要是標出常見的幾個泰勒展開式 高階無窮小的計算規則 泰勒公式使用時應該展開到第幾項以及泰勒公式的應用。記憶 一般情況下,考研只會考到某一基本函式展開式x的3到4次方,因為...