記憶體分配中的棧和堆
使用棧就像我們去飯館裡吃飯,只管點菜(發出申請)、付錢、和吃(使用),吃飽了就走,不必理會切菜、洗菜等準備工作和洗碗、刷鍋等掃尾工作,它的好處是快捷,但是自由度小。
使用堆就像是自己動手做喜歡吃的菜餚,比較麻煩,但是比較符合自己的口味,而且自由度大。
棧是一種具有後進先出性質的資料結構,也就是說後存放的先取,先存放的後取。這就如同我們要取出放在桶裡面底下的東西(放入的比較早的物體),我們首先要移開壓在它上面的物體(放入的比較晚的物體)。
而堆就不同了,堆是一種經過排序的樹形資料結構,每個結點都有乙個值。通常我們所說的堆的資料結構,是指二叉堆。堆的特點是根結點的值最小(或最大),且根結點的兩個子樹也是乙個堆。由於堆的這個特性,常用來實現優先佇列,堆的訪問是隨意,這就如同我們在圖書館的書架上取書,雖然書的擺放是有順序的,但是我們想取任意一本時不必像棧一樣,先取出前面所有的書,書架這種機制不同於箱子,我們可以直接取出我們想要的書。
堆和棧的第乙個區別就是申請方式不同:棧(英文名稱是stack
)是系統自動分配空間的,例如我們定義乙個char a
;系統會自動在棧上為其開闢空間。而堆(英文名稱是heap
)則是程式設計師根據需要自己申請的空間,例如:malloc(10) 開闢十個位元組的空間
。
由於棧上的空間是自動分配自動**的,所以棧上的資料的生存週期只是在函式的執行過程中,執行後就釋放掉,不可以再訪問。而堆上的資料只要程式設計師不釋放空間,就一直可以訪問到,不過缺點是一旦忘記釋放會造成記憶體洩露。
棧:只要棧的剩餘空間大於所申請空間,系統將為程式提供記憶體,否則將報異常提示棧溢位。
堆:首先應該知道作業系統有乙個記錄空閒記憶體位址的鍊錶,當系統收到程式的申請時,會遍歷該鍊錶,尋找第乙個空間大於所申請空間的堆結點,然後將該結點從空閒結點鍊錶中刪除,並將該結點的空間分配給程式,另外,對於大多數系統,會在這塊記憶體空間中的首位址處記錄本次分配的大小,這樣,**中的delete
語句才能正確的釋放本記憶體空間。另外,由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多餘的那部分重新放入空閒鍊錶中。 也就是說堆會在申請後還要做一些後續的工作這就會引出申請效率的問題。
根據第 1 點和第 2 點可知。
棧:由系統自動分配,速度較快。但程式設計師是無法控制的。
堆:是由new
分配的記憶體,一般速度比較慢,而且容易產生記憶體碎片,不過用起來最方便。
棧:在 windows 下,棧是向低位址擴充套件的資料結構,是一塊連續的記憶體的區域。如果申請的空間超過棧的剩餘空間時,將提示 overflow。因此,能從棧獲得的空間較小。
堆:堆是向高位址擴充套件的資料結構,是不連續的記憶體區域。這是由於系統是用鍊錶來儲存的空閒記憶體位址的,自然是不連續的,而鍊錶的遍歷方向是由低位址向高位址。堆的大小受限於計算機系統中有效的虛擬記憶體。由此可見,堆獲得的空間比較靈活,也比較大。
由於棧的大小有限,所以用子函式還是有物理意義的,而不僅僅是邏輯意義。
棧: 在函式呼叫時,第乙個進棧的是主函式中函式呼叫後的下一條指令(函式呼叫語句的下一條可執行語句)的位址,然後是函式的各個引數,然後是函式中的區域性變數。注意靜態變數是不入棧的。當本次函式呼叫結束後,區域性變數先出棧,然後是引數,最後棧頂指標指向最開始存的位址,也就是主函式中的下一條指令,程式由該點繼續執行。
堆:一般是在堆的頭部用乙個位元組存放堆的大小。堆中的具體內容有程式設計師安排。
參考文章:
資料結構的堆疊與記憶體中堆疊的區別
隨筆 20 文章 0 原文 在計算機領域,堆疊是乙個不容忽視的概念,我們編寫的c語言程式基本上都要用到。但對於很多的初學著來說,堆疊是乙個很模糊的概念。堆疊 一種資料結構 乙個在程式執行時用於存放的地方,這可能是很多初學者的認識,因為我曾經就是這麼想的和組合語言中的堆疊一詞混為一談。我身邊的一些程式...
資料結構 堆疊
對於棧,想必大家都十分熟悉了,也能很快的答出棧是乙個先進後出的佇列。但是在平常程式設計的生活中應用的十分少。在acm中,棧是一種十分重要的資料結構 其他領域也一樣 我們可以用這種資料結構解決一些十分棘手的問題,大大提高了程式的效率。有這樣一道名為software bugs 的題。題目的意思簡要來說就...
資料結構 堆疊
引入 多項式計算問題 例如 62 3 42 62 6 2 3 33 3 3 0 042 4 2 8 僅計算最近的兩個數 08 0 8 8 結束 需要某種方式 順序儲存,倒序輸出 堆疊 堆疊 具有操作約束性的線性表 入棧void push stack s,elementtype x else 出棧 e...