在西洋棋中,皇后是最厲害的棋子,可以橫走、直走,還可以斜走。棋手馬克斯·貝瑟爾 1848 年提出著名的八皇后問題:即在 8 × 8 的棋盤上擺放八個皇后,使其不能互相攻擊 —— 即任意兩個皇后都不能處於同一行、同一列或同一條斜線上。例如:
現在我們把棋盤擴充套件到 n×n 的棋盤上擺放 n 個皇后,請問該怎麼擺?
請編寫程式,輸入正整數 n,輸出全部擺法(棋盤格仔空白處顯示句點「.」,皇后處顯示字母「q」,每兩個字元之間空一格)。
輸入格式
正整數 n(n>0)
輸出格式
若問題有解,則輸出全部擺法(每兩種擺法之間空一行)。
若問題無解,則輸出 none。
要求:試探的順序按從上到下逐行進行,其中每一行按從左到右的逐格進行,請參看輸出樣例2。
輸入樣例1
3輸出樣例1
none
輸入樣例2
6輸出樣例2
. q . . . .
. . . q . .
. . . . . q
q . . . . .
. . q . . .
. . . . q .
. . q . . .
. . . . . q
. q . . . .
. . . . q .
q . . . . .
. . . q . .
. . . q . .
q . . . . .
. . . . q .
. q . . . .
. . . . . q
. . q . . .
. . . . q .
. . q . . .
q . . . . .
. . . . . q
. . . q . .
. q . . . .
源**:
#include
#include
#include
using
namespace std;
vector
char
>
>arr;
vector
char
>
>vct;
int number=0;
int n;
intjudge
(int x,
int y)
}int i,j;
for(i=x-
1,j=y-
1;i!=
0&&j!=
0;i--
,j--)}
for(i=x-
1,j=y+
1;i!=
0&&j!=n+
1;i--
,j++)}
return1;
}void
dfs(
int q)
} cout<
} cout<
} vct.
assign
(arr.
begin()
,arr.
end())
; number++
;return;}
for(
int i=
1;i<=n;i++
) arr[q]
[i]=
'.';}}
intmain()
for(
int i=
1;i<=n;i++)}
dfs(1)
;if(number==0)
else
} cout<
return0;
}
回溯演算法 八皇后
總時間限制 1000ms 記憶體限制 65536kb 描述 會下西洋棋的人都很清楚 皇后可以在橫 豎 斜線上不限步數地吃掉其他棋子。如何將8個皇后放在棋盤上 有8 8個方格 使它們誰也不能被吃掉!這就是著名的八皇后問題。對於某個滿足要求的8皇后的擺放方法,定義乙個皇后串a與之對應,即a b 1b2....
回溯演算法 八皇后
今天學習了下回溯演算法,順便看了下經典案例 八皇后問題。該問題是國際西洋棋棋手馬克斯 貝瑟爾於1848年提出 在8 8格的西洋棋上擺放八個皇后,使其不能互相攻擊,即任意兩個皇后都不能處於同一行 同一列或同一斜線上,問有多少種擺法。回溯演算法的搜尋邏輯是深度優先,即,從一條路往前走,能進則進,不能進則...
八皇后演算法(回溯)
演算法描述 八皇后是一道很具典型性的題目。它的基本要求是這樣的 在乙個8 8的矩陣上面放置8個物體,乙個矩陣點只允許放置乙個物體,任意兩個點不能在一行上,也不能在一列上,不能在一條左斜線上,當然也不能在一條右斜線上。八皇后問題,是乙個古老而著名的問題,是回溯演算法的典型例題。該問題是十九世紀著名的數...