516. 最長回文子串行給定乙個字串s,找到其中最長的回文子串行。可以假設s的最大長度為1000。
示例 1:
輸入:
"bbbab"
輸出:
4
乙個可能的最長回文子串行為 「bbbb」。
示例 2:
輸入:
"cbbd"
輸出:
2
乙個可能的最長回文子串行為 「bb」。
狀態定義:dp[i][j] 代表str的區間[i,j]最長的回文子串的長度。
狀態選擇、狀態轉移:
if
str[i]
==str
[j]:
dp[i]
[j]=
max(
2+dp[i+1]
[j-1
], dp[i]
[j-1
], dp[i+1]
[j])
else
: dp =
max(dp[i]
[j-1
], dp[i+1]
[j])
class
solution
:def
longestpalindromesubseq
(self, s:
str)
->
int:
lens =
len(s)
if lens <2:
return lens
dp =[[
0for j in
range
(lens)
]for i in
range
(lens)
]for i in
range
(lens)
: dp[i]
[i]=
1 max_sub_s =
1for i in
range
(lens-2,
-1,-
1): dp[i]
[i+1]=
2if s[i]
== s[i+1]
else
1 max_sub_s_i = dp[i]
[i+1
]for j in
range
(i+2
,lens)
: tmp =
1if s[i]
== s[j]
: tmp =
2+ dp[i+1]
[j-1
] dp[i]
[j]=
max(tmp,dp[i]
[j-1
],dp[i+1]
[j])
max_sub_s_i =
max(max_sub_s_i, dp[i]
[j])
max_sub_s =
max(max_sub_s,max_sub_s_i)
return max_sub_s
通過此題可以聯想到:
1143. 最長公共子串行中狀態定義與狀態選擇的方法。
5. 最長回文子串 中狀態轉移的方式。
516 最長回文子串行
516.最長回文子串行 子串行和子串是不同的,子串行是不連續的序列,而子串是連續的。這個題所求為最長的回文子串行,如果要遍歷的話,時間複雜度為指數級別,肯定是超時的。這種要求為o n 2 的時間複雜度,除了貪心,基本只有dp能做到了,那麼子問題是什麼呢?這樣定義 如果已知區間 i j 中最長的回文子...
516 最長回文子串行
516.最長回文子串行 給定乙個字串 s 找到其中最長的回文子串行,並返回該序列的長度。可以假設 s 的最大長度為 1000 示例 1 輸入 bbbab 輸出 4 解釋 乙個可能的最長回文子串行為 bbbb 示例 2 輸入 cbbd 輸出 2 解釋 乙個可能的最長回文子串行為 bb 剛開始做提的時候...
516 最長回文子串行
給定乙個字串s,找到其中最長的回文子串行。可以假設s的最大長度為1000。示例 1 輸入 bbbab 輸出 4 乙個可能的最長回文子串行為 bbbb 示例 2 輸入 cbbd 輸出 2 乙個可能的最長回文子串行為 bb 解 狀態 f i j 表示 s 的第 i 個字元到第 j 個字元組成的子串中,最...