題目描述:
給乙個鍊錶,若其中包含環,請找出該鍊錶的環的入口結點,否則,輸出null。
解答如下:
環境:python 2.7.3
本題的思路是設定快指標fastpointer,步長為2,設定慢指標,步長為1。迴圈先移動慢指標再移動快指標,然後判斷它們是否相遇,如果相遇了則說明鍊錶有環,否則鍊錶沒有環。
當它們相遇時,我們可以知道,快指標走過的總步數是滿指標走過總步數的兩倍。
(1)我們設l為慢指標走過的步數為l,那麼2l = l。
(2)設從表頭走到入口點需要s步。
(3)設慢指標在相遇前在環內走了d步。
(4)設慢指標再走m步,又可以到達入口點,也就是d+m等於乙個迴圈。
那麼:slowpointer的步長l = s + d
fastpointer的步長2l=n(m+d) + s + d #n表示快指標繞環次數
聯立兩式:s = m + (n-1)(m+d) #可知,從表頭走步長為1的s步和從相遇點再走步長為1的m步的再次相遇點為環入口點。
#判斷鍊錶有沒有環,定義快慢指標,快指標步長2,慢指標步長1.
#要麼快指標為空(沒有環),要麼快慢重合(有環)。
if phead ==
none
:return
none
fastpointer = phead
slowpointer = phead
circle =
false
#預設沒有環
while fastpointer and fastpointer.
next
: fastpointer = fastpointer.
next
.next
slowpointer = slowpointer.
next
if fastpointer == slowpointer:
circle =
true
break
if circle !=
true
:return
none
#快慢指標行走的步數始終是相等的,設步數為l。
#slow總步長為l,fast總步長為2l.
#假設開始到入口點長度為s,slow在環內走了d。
#slowpointer的步長l = s + d
#fastpointer的步長2l=n(m+d) + s + d
#聯立兩式:s = m + (n-1)(m+d)
fastpointer = phead
while fastpointer != slowpointer:
fastpointer = fastpointer.
next
slowpointer = slowpointer.
next
return fastpointer
劍指offer 鍊錶中環的入口
問題描述 給乙個鍊錶,若其中包含環,請找出該鍊錶的環的入口結點,否則,輸出null。假設x為環前面的路程 紅色路程 a為環入口到相遇點的路程 綠色路程,假設順時針走 c為環的長度 藍色路程 設定快慢指標fast和slow,快指標的速度是慢指標的兩倍 當快慢指標相遇的時候 此時慢指標走的路程為sslo...
劍指Offer 鍊錶中環的入口節點
1.如果鍊錶中有環,可以通過快慢指標,最後快慢指標肯定會相會於環中的某個節點 2.從這個相會的節點開始,當再次遇到該節點,即可統計環中有節點數 n 3.設定兩個指標p,p1,p從頭先走 n 步,p1在頭部,然後兩個指標同時 走,當兩指標相遇時,相遇的節點即是環的入口。c struct listnod...
劍指Offer 鍊錶中環的入口結點
第一步 先找到環中的乙個點 第二步 確定環中有幾個元素,比如n個 第三步 讓第乙個指標先走n步,第二個指標再從頭走,兩指標相遇即為入口結點 class solution def entrynodeofloop self,phead write code here meetingnode self.m...