Dijkstra最短路演算法

2021-10-03 18:09:50 字數 298 閱讀 1417

求乙個圖中單個源到所有點的最短距離;

開始的時候所有的點都各自為乙個集合;從確定的源點開始歸併集合;

1、 找到裡此集合最近的乙個點;

2、 將這個點歸併進這個集合,確定源點到這個點的最短路徑;

3、 重複1.2直到所有的點都在乙個集合之中;

int date[100],a[100],d[100][100];//儲存當前在集合中的點和圖

初始化a陣列為無窮,a[1]為0,date為0

輸入圖;

for(int i=1;i輸出a陣列;

複雜度o(n^3)

最短路 Dijkstra演算法

dijksitra演算法求最短路僅僅適用於不存在右邊是負權的情況 bellman ford演算法沒有這乙個限制 主要特點是從起點為中心向外層層擴充套件,直到擴充套件到終點為止。即乙個最短路路徑中經過的所有點這條路均是其最短路。反證法易證 dijkstra基本思路 找到最短距離已經確定的頂點,從它出發...

dijkstra最短路演算法

dijkstra演算法 1.定義概覽 dijkstra 迪傑斯特拉 演算法是典型的單源最短路徑演算法,用於計算乙個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴充套件,直到擴充套件到終點為止。dijkstra演算法是很有代表性的最短路徑演算法,在很多專業課程中都作為基本內容有詳細的...

最短路 Dijkstra演算法

這是一類求單源最短路的演算法,也就是求某乙個頂點到其他所有頂點的最短路。它是按照最短路徑遞增的順序來計算的。先說一下大體思路 將圖中的頂點分為兩個集合,s,v s。s儲存已經求出最短路徑的頂點,v s儲存未求出最短路的頂點。然後演算法就是不斷額的求出v s中頂點的最短路,然後把它加入s中,直到所有頂...