在數值分析中,拉格朗日插值法是以法國十八世紀數學家約瑟夫·拉格朗日命名的一種多項式插值方法。許多實際問題中都用函式來表示某種內在聯絡或規律,而不少函式都只能通過實驗和觀測來了解。拉格朗日插值法可以找到乙個多項式,其恰好在各個觀測的點取到觀測到的值。這樣的多項式稱為拉格朗日(插值)多項式。
拉格朗日差值公式:
如果x是連續的,那麼我們可以通過預處理,使其變成o(n)的。
例題:拉格朗日插值
ac**:
#pragma gcc optimize("-ofast","-funroll-all-loops")
#include
#define int long long
using namespace std;
const
int mod=
998244353
;const
int n=
2e3+10;
int n,k,x[n]
,y[n]
;int
qmi(
int a,
int b=mod-2)
return res;
}inline
intsolve
(int k)
res=
(res+
(y[i]
*s1)
%mod*
qmi(s2)
%mod)
%mod;
}return res;
}signed
main()
拉格朗日插值
拉格朗日插值基函式 li x x x 0 x xi 1 x xi 1 x x n x i x0 xi xi 1 xi xi 1 xi xn 拉格朗日差值函式 ln x i 0 nyil i x 其中,x為缺失值對應的下表序號,ln x 為缺失值的插值結果,xi 為缺失值yi 的下表序號。對全部缺失值...
拉格朗日插值
function s larg1 x,y,xi m length x 求出插值節點向量長度 n length y if m n error 向量x與y的長度必須一致 這裡肯定一致,只是為了消除直接選取x,y資料的時候出錯而設定的 end s 0 for i 1 n z ones 1,length x...
拉格朗日插值
存在性和唯一性的證明以後再補。拉格朗日插值,emmmm,名字挺高階的 joy 它有什麼應用呢?我們在fft中講到過 設 n 1 次多項式為 y sum a i x i 有乙個顯然的結論 如果給定 n 個互不相同的點 x,y 則該 n 1 次多項式被唯一確定 那麼如果給定了這互不相同的 n 個點,利用...