調研機構gartner公司發布的名為《資料中心即將消亡,數字基礎設施出現》的調查報告表明,到2023年,80%的企業將關閉其傳統的資料中心。而目前僅有10%的企業關閉。該報告於2023年4月發布,並表示傳統的資料中心將專用於其他地方無法支援的非常具體的服務,或支援那些經濟效益最高的本地系統。
報告還指出,隨著互連服務、雲計算、物聯網(iot)、邊緣計算、saas產品繼續激增,企業保留傳統資料中心拓撲結構具有的優勢有限。
這份報告表明,人們認為目前正在進行一場革命性的變革浪潮,而且正在改變企業向客戶和企業提供服務的方式。然而,諸如此類的報告並不總是準確的。例如,人工智慧(ai)和機器學習(ml)正在推動資料中心的變革。那麼,他們不僅會推動資料中心管理,而且還會將資料中心從將會消亡的**中拯救出來嗎?
時尚行業和計算機行業的相似之處
在人們看來,很容易在時尚行業和計算機行業之間劃清界限。雖然每年都會推出一些新事物,並從根本上改變一切(或者他們希望如此)。這至少是**商想要發生的事情。如果不符合當前的趨勢,它們會增加失敗的可能性。然而,許多企業陷入了困境。
很多行業專家對行業和技術發展進行**,並得出結論:雖然大多數**都已經實現,但它們發生的時間比預期的要晚得多。它們也產生了比預期更大的影響。同樣,客戶經常被告知一些技術已經消亡。這有點像**磁帶已經消亡,或者無紙辦公室即將到來一樣。
it行業似乎從來沒有擺脫過極端的激情,那麼,人們該如何看待gartner公司的**呢?儘管看起來完全不切實際,但資料中心仍繼續存在。而在專家看來,資料中心將永遠存在,因為在整個行業所見證的所有變化中,它們一直是計算技術的基石:如計算、客戶機-伺服器拓撲、網際網路、個人電腦革命,以及業務向雲端的遷移。還有其他的技術,其中包括磁帶。
因此從表面上看,gartner公司的報告很容易被駁回。但是,考慮到一些嚴重依賴it功能的技術,以及使用者對it的期望。it行業傾向於關注速度和饋送開發,以滿足不斷增加的縮短響應時間的需求。採用更快的cpu、更快的緊密耦合記憶體和i/o、固態磁碟,而自動駕駛車輛、物聯網、人工智慧、機器學習將成為資料海嘯。
資料重點
對資料的重視將在未來定義it基礎設施。傳統上,人們使用資料作為達到目的的手段進行計算和處理,然後得到結果。資料將被分類為訪問和保留成本層。
在後期製作和數位化之後,netflix、亞馬遜和spotify就像傳統的產品製造商一樣,將他們的資料和產品儲存在雲端。然後將它們運送到客戶的邊緣。對於netflix公司,邊緣在本地網際網路服務提供商(isp)購買後即可使用。因此,這相當於為資料交付優化的簡單「即付即用」體系結構。
不同的要求
物聯網(iot)、自主駕駛車輛提供了另乙個例子。企業也可以投入到智慧型城市,以獲得良好的衡量。它們有非常不同的資料和計算要求,這些裝置發出的資料以狀態資訊的形式存在,在許多情況下,例如控制工業過程,其中一些狀態資料是可操作的。根據資料的即時性,對如何以及何時處理該資料的考慮因素有所不同。
這就引出了這樣的問題:在雲中可以做到這一點嗎?或者延遲和緊迫性是否需要邊緣附近的小型計算功能,例如大型煉油廠。當必須跨多個物聯網裝置做出決定,以及當有阻塞的通訊鏈結返回到雲端時,事情很容易失控。同樣重要的是,所有的歷史資料都需要流回乙個點,在這個點上它可以採用人工智慧和機器學習進行處理。
考慮聯網車輛和智慧型城市共同管理交通流量和阻塞。他們需要一些強大的計算能力和儲存能力來收集潛在的數萬臺裝置的所有資料,如汽車、攝像頭、交通流量監視器以及與應急服務的互動。這將需要雙向的流量,其中資訊和娛樂資料被傳遞到車輛。如果人們能將應急服務車輛和交通管理系統連線起來,以便在擁擠的城市中更快地通行。
定義基礎設施
那麼,這些需求是如何定義基礎設施的呢?傳統上,需要乙個龐大的資料中心來處理。而這需要一種更為動態的方法,在這種方法中,可以根據需要自動增加或減少額外的資源,例如在緊急情況下。
另乙個變化很大的方面是不斷增長的計算功能。幾年前,手機只能儲存**號碼和簡訊。如今,每個智慧型手機都擁有令人難以置信的儲存和計算功能。
然而,人們正在構建越來越多的應用程式,客戶將要求他們的裝置具有更高的複雜性,例如測量員將平板電腦監測土壤結構,或者醫護人員在救護車中掃瞄患者,並使用人工智慧診斷症狀或評估他們的傷害。為了滿足這種額外的計算需求,在邊緣或雲計算的一種補充計算功能的形式連線到使用者的輔助計算功能形式。將來,每個人都將擁有自己的個人小型計算和儲存裝置,隨時隨地跟隨他們自動遷移到最近的訪問點。
資料方程
人們所做的一切都創造了越來越多的資料。反過來,作為企業和消費者,人們將消耗越來越多的資料。無論是進出雲平台、資料中心還是邊緣計算,移動這些不斷增長的資料都是非常痛苦的。這種痛苦來自於網路對於正在移動的資料量來說並不夠快的事實。無論在這個問題上投入多少頻寬,一旦達到兩位數毫秒的延遲,在沒有使用廣域網(wan)資料加速解決方案來減輕延遲和資料報丟失的影響的情況下,廣域網(wan)效能將幾乎沒有改善。
資料中心將保留一些關鍵功能:其中乙個功能將包含延遲關鍵資料庫。有一些公司在雲計算中查詢資料庫時遇到了不良響應(以及終端使用者投訴),這些資料庫迫使他們遷移回資料中心。然而,由於未來需要高度靈活的分布式資料和計算需求,資料中心將轉變為指揮和控制功能。
實現靈活性
為了達到這種靈活性,必須擺脫現有的人工操作方法。現在是使用人工智慧(ai)和機器學習(ml)來提供高水平的自動化抽象來建立靈活的動態基礎設施的時候了。
移動資料對於在需要時將資料放在所需位置的能力至關重要。傳統上,廣域網(wan)優化被用來提高遠距離的資料吞吐量,但這種技術具有嚴格的頻寬限制。為了在高速網路上最大化資料的功能,需要使用人工智慧和機器學習的廣域網資料加速解決方案,如portrockit。
dell emc公司人工智慧戰略技術專家tabet表示,他認為資料中心管理人員應採用人工智慧來找到優化資料中心基礎設施的更好方法。aera科技公司創始人兼首席技術官shariq mansoor補充道:「沒有人工智慧,幾乎不可能運營有利可圖的資料中心。因此可以說,人工智慧和機器學習是推動資料中心向前發展所必需的技術。」
他說,「有了它們,就可以管理資料流,並提高資料速度——即使使用原有架構也是如此。有鑑於此,全球業務資料中心可能會發生變化,但它仍有發展的未來。」
人工智慧資料中心
眾所周知,人工智慧 ai 是熱門,ai會已成為今年熱門技術討論前沿,業界大部分公司都在樂此不疲的討論著ai對此技術進行各種想象性的嘗試,期待更深入的了解該技術在細分市場中的應用。事實上,2016年11月forrester報告就中做出 報告中提到ai將 通過縮小理論與實踐的差距,促進資料中心在市場營銷...
微模組資料中心的「大智慧型」
近年來,各行業資訊化轉型浪潮逐步公升級,以資訊化促進企業發展及市場經濟高速運轉,成為大勢所趨。在這場變革中,it技術及基礎設施不再僅僅是 幕後英雄 或將成為傳統企業創造新的商業模式 提公升效率和服務體驗的 引領 型力量,將扮演前所有為的重要角色。故而在此大背景下,我國企業特別是中小型企業,在資料中心...
人工智慧與大資料的應用
兩個概念 人工智慧 人造的智慧型,通過研究人類的智慧型,了解人類智慧型 看 聽 說 寫 聞 思考等能力 的實質,生產出具有人類智慧型的機器。大資料 密度大 體量大 維度多 價值高的資料。人工智慧與大資料的關係 人工智慧隨著大資料的發展,將智慧型應用發展得淋漓盡致,在各行各業都得到廣泛的應用。包括智慧...