連號區間數

2021-09-12 08:28:37 字數 1267 閱讀 8530

小明這些天一直在思考這樣乙個奇怪而有趣的問題:

在1~n的某個全排列中有多少個連號區間呢?這裡所說的連號區間的定義是:

如果區間[l, r] 裡的所有元素(即此排列的第l個到第r個元素)遞增排序後能得到乙個長度為r-l+1的「連續」數列,則稱這個區間連號區間。

當n很小的時候,小明可以很快地算出答案,但是當n變大的時候,問題就不是那麼簡單了,現在小明需要你的幫助。

輸入格式:

第一行是乙個正整數n (1 <= n <= 50000), 表示全排列的規模。

第二行是n個不同的數字pi(1 <= pi <= n), 表示這n個數字的某一全排列。

輸出格式:

輸出乙個整數,表示不同連號區間的數目。

示例:使用者輸入:

43 2 4 1

程式應輸出:

7使用者輸入:

53 4 2 5 1

程式應輸出:

9解釋:

第乙個用例中,有7個連號區間分別是:[1,1], [1,2], [1,3], [1,4], [2,2], [3,3], [4,4]

第二個用例中,有9個連號區間分別是:[1,1], [1,2], [1,3], [1,4], [1,5], [2,2], [3,3], [4,4], [5,5]

資源約定:

峰值記憶體消耗 < 64m

cpu消耗  < 5000ms

請嚴格按要求輸出,不要畫蛇添足地列印類似:「請您輸入...」 的多餘內容。

所有**放在同乙個原始檔中,除錯通過後,拷貝提交該原始碼。

注意: main函式需要返回0

注意: 只使用ansi c/ansi c++ 標準,不要呼叫依賴於編譯環境或作業系統的特殊函式。

注意: 所有依賴的函式必須明確地在原始檔中 #include , 不能通過工程設定而省略常用標頭檔案。

提交時,注意選擇所期望的編譯器型別。

題意:連號區間:對區間【l,r】內的所有元素(下標第l個數到下標第r個數)遞增排序後得到乙個長度為r-l+1的「連續」數列

思路:連號區間相當於乙個d=1的等差數列,只要滿足am-an==m-n,因為序列不是有序的,只要找到區間的最大值和最小值滿

:maxn-minn==j-i

**:

#include#includeusing namespace std;

int a[50005];

int cnt=0;

int main()

} cout

}

連號區間數

小明這些天一直在思考這樣乙個奇怪而有趣的問題 在1 n的某個全排列中有多少個連號區間呢?這裡所說的連號區間的定義是 如果區間 l,r 裡的所有元素 即此排列的第l個到第r個元素 遞增排序後能得到乙個長度為r l 1的 連續 數列,則稱這個區間連號區間。當n很小的時候,小明可以很快地算出答案,但是當n...

連號區間數

小明這些天一直在思考這樣乙個奇怪而有趣的問題 在1 n的某個全排列中有多少個連號區間呢?這裡所說的連號區間的定義是 如果區間 l,r 裡的所有元素 即此排列的第l個到第r個元素 遞增排序後能得到乙個長度為r l 1的 連續 數列,則稱這個區間連號區間。當n很小的時候,小明可以很快地算出答案,但是當n...

連號區間數

問題描述 小明這些天一直在思考這樣乙個奇怪而有趣的問題 在1 n的某個全排列中有多少個連號區間呢?這裡所說的連號區間的定義是 如果區間 l,r 裡的所有元素 即此排列的第l個到第r個元素 遞增排序後能得到乙個長度為r l 1的 連續 數列,則稱這個區間連號區間。當n很小的時候,小明可以很快地算出答案...