藍橋杯 連號區間數

2021-06-20 15:41:59 字數 725 閱讀 4553

問題描述

小明這些天一直在思考這樣乙個奇怪而有趣的問題:

在1~n的某個全排列中有多少個連號區間呢?這裡所說的連號區間的定義是:

如果區間[l, r] 裡的所有元素(即此排列的第l個到第r個元素)遞增排序後能得到乙個長度為r-l+1的「連續」數列,則稱這個區間連號區間。

當n很小的時候,小明可以很快地算出答案,但是當n變大的時候,問題就不是那麼簡單了,現在小明需要你的幫助。

輸入格式

第一行是乙個正整數n (1 <= n <= 50000), 表示全排列的規模。

第二行是n個不同的數字pi(1 <= pi <= n), 表示這n個數字的某一全排列。

輸出格式

輸出乙個整數,表示不同連號區間的數目。

樣例輸入1 4

3 2 4 1

樣例輸出1 7

樣例輸入2 5

3 4 2 5 1

樣例輸出2 9

這題其實也算是找規律吧?

因為n個數字肯定是1~n,那麼在某個區間內,最大的數減去最小的數為區間長的話,那麼這個區間肯定是連號區間無疑。。。

#include #include #include using namespace std;

int a[50005];

int main()

}printf("%d\n",ans);

return 0;

}

藍橋杯 連號區間數

問題描述 小明這些天一直在思考這樣乙個奇怪而有趣的問題 在1 n的某個全排列中有多少個連號區間呢?這裡所說的連號區間的定義是 如果區間 l,r 裡的所有元素 即此排列的第l個到第r個元素 遞增排序後能得到乙個長度為r l 1的 連續 數列,則稱這個區間連號區間。當n很小的時候,小明可以很快地算出答案...

藍橋杯 連號區間數

峰值記憶體消耗 64m cpu消耗 5000ms 小明這些天一直在思考這樣乙個奇怪而有趣的問題 在1 n的某個全排列中有多少個連號區間呢?這裡所說的連號區間的定義是 如果區間 l,r 裡的所有元素 即此排列的第l個到第r個元素 遞增排序後能得到乙個長度為r l 1的 連續 數列,則稱這個區間連號區間...

藍橋杯 連號區間數

藍橋杯 連號區間數 小明這些天一直在思考這樣乙個奇怪而有趣的問題 在1 n的某個全排列中有多少個連號區間呢?這裡所說的連號區間的定義是 如果區間 l,r 裡的所有元素 即此排列的第l個到第r個元素 遞增排序後能得到乙個長度為r l 1的 連續 數列,則稱這個區間連號區間。當n很小的時候,小明可以很快...