注:通篇全是我從不同文章裡抄得。 包括:popkiler的部落格和丹尼的部落格
演算法的時間效能分析
乙個演算法所耗費的時間=演算法中每條語句執行時間之和其中,演算法中每條語句執行時間=語句頻度*執行所需的單位時間。如果一條語句執行時間為單位時間,那麼程式執行時間就是所有語句的頻度之和。可以看出程式效能的取決於機器指令的效能、速度和編譯器產生的**質量有關。
o(1):
tmp=m;m=n;n=tmp
o(n^2):
sum=0; (一次)
for(i=1;i<=n;i++) (n次 )
for(j=1;j<=n;j++) (n^2次 )
sum++; (n^2次 )
解:t(n)=2n^2+n+1 =o(n^2)
for (i=1;i解: 語句1的頻度是n-1
語句2的頻度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
該程式的時間複雜度t(n)=o(n^2).
o(n):
a=0;
b=1; ①
for (i=1;i<=n;i++) ②
解: 語句1的頻度:2,
語句2的頻度: n,
語句3的頻度: n-1,
語句4的頻度:n-1,
語句5的頻度:n-1,
t(n)=2+n+3(n-1)=4n-1=o(n).
o(log2n):
i=1; ①
while (i<=n)
i=i*2; ②
解: 語句1的頻度是1,
設語句2的頻度是f(n), 則:2^f(n)<=n;f(n)<=log2n
取最大值f(n)= log2n,
t(n)=o(log2n )
o(n^3):
for(i=0;i}解: 當i=m, j=k的時候,內層迴圈的次數為k當i=m時, j 可以取 0,1,...,m-1 , 所以這裡最內迴圈共進行了0+1+...+m-1=(m-1)m/2次所以,i從0取到n, 則迴圈共進行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以時間複雜度為o(n^3).
我 們還應該區分演算法的最壞情況的行為和期望行為。如快速排序的最 壞情況執行時間是 o(n^2),但期望時間是 o(nlogn)。通過每次都仔細 地選擇基準值,我們有可能把平方情況 (即o(n^2)情況)的概率減小到幾乎等於 0。在實際中,精心實現的快速排序一般都能以 (o(nlogn)時間執行。
下面是一些常用的記法:
訪問陣列中的元素是常數時間操作,或說o(1)操作。乙個演算法 如 果能在每個步驟去掉一半資料元素,如二分檢索,通常它就取 o(logn)時間。用strcmp比較兩個具有n個字元的串需要o(n)時間 。常規的矩陣乘演算法是o(n^3),因為算出每個元素都需要將n對 元素相乘並加到一起,所有元素的個數是n^2。
指數時間演算法通常**於需要 求出所有可能結果。例如,n個元 素的集合共有2n個子集,所以要求出所有子集的演算法將是o(2n)的 。指數演算法一般說來是太複雜了,除非n的值非常小,因為,在 這個問題中增加乙個元素就導致執行時間加倍。不幸的是,確實有許多問題 (如著名 的「巡迴售貨員問題」 ),到目前為止找到的演算法都是指數的。如果我們真的遇到這種情況, 通常應該用尋找近似最佳結果的演算法替代之。
演算法時間複雜度空間複雜度
演算法 是解決某一類問題的通法,即一系列清晰無歧義的計算指令。每個演算法只能解決具有特定特徵的一類問題,但乙個問題可由多個演算法解決。乙個演算法應該有以下五個方面的特性 比較演算法的優劣我們從兩個維度去進行考量 時間 空間 時間複雜度,空間複雜度 找出基本語句 演算法中執行次數最多的那條語句就是基本...
演算法 時間複雜度 空間複雜度
1 if i 1 2 a 1 result 3 4 result n 2 result 1000 1000 3 array.push a array.pop 4 map.set 1,1 map.get 1,1 在計算複雜度的時候,o 1 一般會被忽略。1 for let i 0 i n i 2 wh...
演算法的時間複雜度 空間複雜度
時間複雜度和空間複雜度是度量演算法效率的常用指標 事後統計,不常用 事前統計影響因素 演算法策略 問題規模 程式語言 質量 機器執行指令的速度 撇開軟硬體的影響,演算法執行工作量的大小只依賴於問題的規模 通常用整數n表示 乙個演算法是由控制結構 順序,分支,迴圈三種 和原操作 指固有資料型別的操作 ...