⑴ 找出演算法中的基本語句;
演算法中執行次數最多的那條語句就是基本語句,通常是最內層迴圈的迴圈體。
⑵ 計算基本語句的執行次數的數量級;
只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函式中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的係數。這樣能夠簡化演算法分析,並且使注意力集中在最重要的一點上:增長率。
⑶ 用大ο記號表示演算法的時間效能。
將基本語句執行次數的數量級放入大ο記號中。
如果演算法中包含巢狀的迴圈,則基本語句通常是最內層的迴圈體,如果演算法中包含並列的迴圈,則將並列迴圈的時間複雜度相加。例如:
for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;
第乙個for迴圈的時間複雜度為ο(n),第二個for迴圈的時間複雜度為ο(n^2),則整個演算法的時間複雜度為ο(n+n^2)=ο(n^2)。
常見的演算法時間複雜度由小到大依次為:
ο(1)<ο(log2n)<ο(n)<ο(nlog2n)<ο(n^2)<ο(n^3)<…<ο(2^n)<ο(n!)
ο(1)表示基本語句的執行次數是乙個常數,一般來說,只要演算法中不存在迴圈語句,其時間複雜度就是ο(1)。ο(log2n)、ο(n)、ο(nlog2n)、 ο(n^2)和ο(n^3)稱為多項式時間,而ο(2^n)和ο(n!)稱為指數時間。計算機科學家普遍認為前者是有效演算法,把這類問題稱為p類問題,而把後者稱為np問題。
這只能基本的計算時間複雜度,具體的執行還會與硬體有關。
常見演算法時間複雜度:
o(1):優<---------------------------《劣
o(1)2n)<o(n)<o(n2)<o(2n)
時間複雜度按數量級遞增排列依次為:常數階o(1)、對數階o(log2n)、線性階o(n)、線性對數階o(nlog2n)、平方階o(n2)、立方階o(n3)、……k次方階o(nk)、指數階o(2n)。
求解演算法的時間複雜度
求解演算法的時間複雜度的具體步驟是 找出演算法中的基本語句 演算法中執行次數最多的那條語句就是基本語句,通常是最內層迴圈的迴圈體。計算基本語句的執行次數的數量級 只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函式中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的係數。這樣能...
時間複雜度的求解方法
一段程式執行的時間是無法準確技術的,通常安裝程式執行次數來估算,用t n 表示。用大寫字母o表示演算法時間複雜度,稱為演算法的時間漸進複雜度。1 時間複雜度為o 1 的情況 int i 3 執行1次 while i 99 執行34次 i i 3 執行33次程式共執行69次,只要是執行次數為常數,t ...
演算法的複雜度 演算法的時間複雜度和空間複雜度
在一次筆試題目中,發現了自己對於演算法的時間複雜度問題上並沒有完全清晰這個概念和計算方法,故上網尋找到比較好的詳細介紹來學習。演算法的時間複雜度和空間複雜度合稱為演算法的複雜度。1.時間複雜度 1 時間頻度 乙個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機執行測試才能知道。但我們不可能也...