劍指offer 遞迴 跳台階

2021-08-28 04:55:32 字數 547 閱讀 8126

乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法。

首先我們考慮最簡單的情況。如果只有1級台階,那麼顯然只一種跳法。如果有2級台階,那就有兩種跳法:一種是分兩次跳,每次跳1級;另一種是一次跳2級。

接著,我們來討論一般情況。我們把n級台階時的跳法看成是n的函式,記為f(n)。當n>2時,第一次跳的時候就有兩種不同的選擇:一是第一次只跳1級,此時跳法數目等於後面剩下的n-1級台階的跳法數目,即為f(n-1);另外一種選擇是跳一次跳2級,此時跳法數目等於後面剩下的n-2級台階的跳法數目,即為f(n-2)。因此n級台階的不同跳法的總數f(n)=f(n-1)+f(n-2)。分析到這裡,我們不難看出這實際上就是菲波那切數列了。

**:

class solution 

else if(number < 3)

int first = 1, second = 2, third = 0;

for(int i = 3; i <= number; i++)

return third;

}};

劍指offer 跳台階

跳台階1 題目 乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法。思路 遞迴思想 可以理解為前面m步的情況加上最後一步的情況,前面m步理解為,m 1步加上最後一步的情況。最後一步分為2中情況,上1級和上2級。如下 class solution 跳台階2 題目 ...

劍指Offer 跳台階

乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法 解析 當青蛙到到n級時,有兩種跳法,一種是從n 1級跳1級,還有種是n 2跳2級 f n f n 1 f n 2 大家對這個公式是不是很熟悉,對,是斐波那契數列。所以這是一道動態規劃的問題。斐波那契數列,只能上...

劍指Offer 跳台階

author tom qian email tomqianmaple outlook.com github date 2017年8月10日 乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法。思路 首先窮舉一下到達最後一級台階的情況,分析最後到達是一步還是兩步。...