題目描述:
乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法(先後次序不同算不同的結果)。
思路:(斐波那契數列變形題)
對於本題,前提只有 一次 1階或者2階的跳法。
1.如果兩種跳法,1階或者2階,那麼假定第一次跳的是一階,那麼剩下的是n-1個台階,跳法是f(n-1);
2.假定第一次跳的是2階,那麼剩下的是n-2個台階,跳法是f(n-2)
3.由a\b假設可以得出總跳法為: f(n) = f(n-1) + f(n-2)
4.然後通過實際的情況可以得出:只有一階的時候 f(1) = 1 ,只有兩階的時候可以有 f(2) = 2
5.可以發現最終得出的是乙個斐波那契數列:
f(1) = 1
f(2) = 2
f(n) = f(n-1)+f(n-2) (n>2,n為整數)
實現:
迭代:
public
class
solution
return result;
}}
矩陣相乘法:
具體**參照:
劍指offer 跳台階
跳台階1 題目 乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法。思路 遞迴思想 可以理解為前面m步的情況加上最後一步的情況,前面m步理解為,m 1步加上最後一步的情況。最後一步分為2中情況,上1級和上2級。如下 class solution 跳台階2 題目 ...
劍指Offer 跳台階
乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法 解析 當青蛙到到n級時,有兩種跳法,一種是從n 1級跳1級,還有種是n 2跳2級 f n f n 1 f n 2 大家對這個公式是不是很熟悉,對,是斐波那契數列。所以這是一道動態規劃的問題。斐波那契數列,只能上...
劍指Offer 跳台階
author tom qian email tomqianmaple outlook.com github date 2017年8月10日 乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法。思路 首先窮舉一下到達最後一級台階的情況,分析最後到達是一步還是兩步。...