pandas學習筆記

2021-08-19 19:56:22 字數 4900 閱讀 9454

import numpy as np

import pandas as pd

obj2 = pd.series([4,7,-5,3],index=['d','b','a','c'])

obj2

out[99]:

d 4

b 7

a -5

c 3

dtype: int64

a = 

b = pd.series(a)

bout[102]:

a 1

b 2

c 3

dtype: int64

通過索引查單值

in [172]: series_4['a']  

out[172]: 4

通過索引序列查多值:

series_4[['a','b']]  

out[174]:

a 4

b 2

dtype: int64

通過布林型別索引篩選:
in [175]: series_4[series_4>2]  

out[175]:

a 4

c 3

dtype: int64

通過位置切片和標籤切片查詢資料:

series_4  

out[194]:

a 4

b 2

c 3

dtype: int64

series_4[:2]

out[195]:

a 4

b 2

dtype: int64

series_4['a':'c']

out[196]:

a 4

b 2

c 3

dtype: int64

注意刪除的是索引值

b

out[105]:

a 1

b 2

c 3

dtype: int64

b.drop('a')

out[106]:

b 2

c 3

dtype: int64

s1

out[112]:

a 1

b 2

c 3

dtype: int64

s1['a'] ='測試'

s1out[114]:

a 測試

b 2

c 3

dtype: object

s1

out[80]:

ceshi 1

001 3

002 5

003 6

004 8

dtype: int6

s1.index._values[0] = '測試'
s1

out[87]:

測試 1

001 3

002 5

003 6

004 8

dtype: int64

值修改方法

#列印s1

s1out[94]:

0 1.0

1 3.0

2 5.0

3 nan

4 6.0

5 8.0

dtype: float64

#將索引值為0的值重新賦值

s1[0] = 11111

s1out[96]:

0 11111.0

1 3.0

2 5.0

3 nan

4 6.0

5 8.0

dtype: float64

如果索引形同,則替換,無則新增

out[117]:

a 測試

b 2

c 3

0 11111

1 3

2 5

3 nan

4 6

5 8

dtype: object

s[0] ='改變了'

sout[121]:

0 改變了

1 3

2 5

3 nan

4 6

5 8

dtype: object

out[122]:

a 測試

b 2

c 3

0 改變了

1 3

2 5

3 nan

4 6

5 8

dtype: object

>>> data = 

>>> data

>>> frame = dataframe(data)

>>> frame

pop state year

0 x 1 a

1 y 2 b

>>> dataframe(data,columns=['year','pop','state'])

year pop state

0 a x 1

1 b y 2

help(df.drop)

help on method drop in module pandas.core.generic:

drop(labels=none, axis=0, index=none, columns=none, level=none, inplace=false, errors='raise') method of pandas.core.frame.dataframe instance

return new object with labels in requested axis removed.

parameters

----------

labels : single label or list-like

index or column labels to drop.

axis : int or axis name

whether to drop labels from the index (0 / 'index') or

columns (1 / 'columns').

index, columns : single label or list-like

alternative to specifying `axis` (``labels, axis=1`` is

equivalent to ``columns=labels``).

.. versionadded:: 0.21.0

level : int or level name, default none

for multiindex

inplace : bool, default false

if true, do operation inplace and return none.

errors : , default 'raise'

if 'ignore', suppress error and existing labels are dropped.

returns

-------

dropped : type of caller

examples

--------

df = pd.dataframe(np.arange(12).reshape(3,4),

columns=['a', 'b', 'c', 'd'])

dfa  b   c   d

0  0  1   2   3

1  4  5   6   7

2  8  9  10  11

drop columns

df.drop(['b', 'c'], axis=1)

a   d

0  0   3

1  4   7

2  8  11

###['b', 'c'])中。b和c中間有個空格

df.drop(columns=['b', 'c'])

a   d

0  0   3

1  4   7

2  8  11

drop a row by index

df.drop([0, 1])

a  b   c   d

2  8  9  10  11

notes

-----

specifying both `labels` and `index` or `columns` will raise a

valueerror.

pandas學習筆記

1 建立物件,瀏覽資料 建立物件,瀏覽資料 import pandas as pd import numpy as np import matplotlib.pyplot as plt 建立series s pd.series 1,2,4,6,np.nan,9,10 index list abcde...

pandas學習筆記

1.series 類似numpy中的一維陣列,表示為索引 從0開始 和值。建立 import pandas as pd,numpy as np s1 pd.series np.arange 10 s2 pd.series 12 2,5 s3 pd.series 含有的屬性 s1.values s1....

pandas學習筆記

pandas像是python中的excel 它的基本資料結構是 在pandas中叫 dataframe 可以對資料進行各種操作和變換。它還能做很多其他的事。import pandas as pd data pd.read csv files.csv seq顯示地宣告分隔符,encodig顯示地宣告編...