最長遞增子串行,longest increasing subsequence 下面我們簡記為 lis。
排序+lcs演算法 以及 dp演算法就忽略了,這兩個太容易理解了。
假設存在乙個序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出來它的lis長度為5。n
下面一步一步試著找出它。
我們定義乙個序列b,然後令 i = 1 to 9 逐個考察這個序列。
此外,我們用乙個變數len來記錄現在最長算到多少了
首先,把d[1]有序地放到b裡,令b[1] = 2,就是說當只有1乙個數字2的時候,長度為1的lis的最小末尾是2。這時len=1
然後,把d[2]有序地放到b裡,令b[1] = 1,就是說長度為1的lis的最小末尾是1,d[1]=2已經沒用了,很容易理解吧。這時len=1
接著,d[3] = 5,d[3]>b[1],所以令b[1+1]=b[2]=d[3]=5,就是說長度為2的lis的最小末尾是5,很容易理解吧。這時候b[1..2] = 1, 5,len=2
再來,d[4] = 3,它正好加在1,5之間,放在1的位置顯然不合適,因為1小於3,長度為1的lis最小末尾應該是1,這樣很容易推知,長度為2的lis最小末尾是3,於是可以把5淘汰掉,這時候b[1..2] = 1, 3,len = 2
繼續,d[5] = 6,它在3後面,因為b[2] = 3, 而6在3後面,於是很容易可以推知b[3] = 6, 這時b[1..3] = 1, 3, 6,還是很容易理解吧? len = 3 了噢。
第6個, d[6] = 4,你看它在3和6之間,於是我們就可以把6替換掉,得到b[3] = 4。b[1..3] = 1, 3, 4, len繼續等於3
第7個, d[7] = 8,它很大,比4大,嗯。於是b[4] = 8。len變成4了
第8個, d[8] = 9,得到b[5] = 9,嗯。len繼續增大,到5了。
最後乙個, d[9] = 7,它在b[3] = 4和b[4] = 8之間,所以我們知道,最新的b[4] =7,b[1..5] = 1, 3, 4, 7, 9,len = 5。
於是我們知道了lis的長度為5。
!!!!! 注意。這個1,3,4,7,9不是lis,它只是儲存的對應長度lis的最小末尾。有了這個末尾,我們就可以乙個乙個地插入資料。雖然最後乙個d[9] = 7更新進去對於這組資料沒有什麼意義,但是如果後面再出現兩個數字 8 和 9,那麼就可以把8更新到d[5], 9更新到d[6],得出lis的長度為6。
然後應該發現一件事情了:在b中插入資料是有序的,而且是進行替換而不需要挪動——也就是說,我們可以使用二分查詢,將每乙個數字的插入時間優化到o(logn)~~~~~於是演算法的時間複雜度就降低到了o(nlogn)~!
/*
hdu 1950 bridging signals
-----最長上公升子串行nlogn演算法
*/#include#include#define maxn 40005
int arr[maxn],ans[maxn],len;
/* 二分查詢。 注意,這個二分查詢是求下界的; (什麼是下界?詳情見《演算法入門經典》 p145)
即返回 >= 所查詢物件的第乙個位置(想想為什麼)
也可以用stl的lowe_bound二分查詢求的下界
*/int binary_search(int i)
return left;
}int main()
printf("%d\n",len);
} return 0;
}
//lower_bound()函式
下面是一道lis的一道高質量模板體
楊老師認為他的學習能力曲線是乙個拱形。勤奮的他根據時間的先後順序羅列了乙個學習清單,共有n個知識點。但是清單中的知識並不是一定要學習的,可以在不改變先後順序的情況下有選擇的進行學習,而每乙個知識點都對應乙個難度值。楊老師希望,後學習的知識點的難度一定不低於前乙個知識點的難度(i=aj)。楊老師想盡可能多的學習知識。請問:楊老師最多可以學習多少知識?
第一行:乙個整數n(0
#include#includeusing namespace std;
int a[510050];
int b[510050];
int c[510050];
int t[510050];
int main()
int top=0;
for(int i=0;i=0;i--)
else
}int maxn=0;
/*for(int i=0;i=0;i--) cout<
最長遞增子串行 LIS
對於這個問題,最直觀的dp方法是cnt i 表示以height i 結束的最長遞增子串行的元素的個數,遞迴方程是cnt i max for max i 0 i求出整個數列的最長遞增子串行的長度 if b i max max b i cout return 0 顯然,這種方法的時間複雜度仍為o n 2...
最長遞增子串行 LIS
給定乙個長度為n的陣列,找出乙個最長的單調自增子序列 不一定連續,但是順序不能亂 例如 給定乙個長度為6的陣列a,則其最長的單調遞增子串行為,長度為4.這個問題可以轉換為最長公共子串行問題。如例子中的陣列a,則我們排序該陣列得到陣列a 然後找出陣列a和a 的最長公共子串行即可。顯然這裡最長公共子串行...
最長遞增子串行(LIS)
300.longest increasing subsequence good 給定乙個長度為n的陣列,找出乙個最長的單調遞增子串行 不一定連續,當時先後順序不能亂 更正式的定義是 設l 是n個不同的實數的序列,l的遞增子串行是這樣乙個子串行lin 其中k1。比如陣列a 為,那麼最長遞增子串行為。以...