乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法。
public
intjumpfloor(int target) else
if(target<=2)
int num=0;
int f1=1,f2=2;
for(int i=2;ireturn num;
}
乙隻青蛙一次可以跳上1級台階,也可以跳上2級……它也可以跳上n級。求該青蛙跳上乙個n級的台階總共有多少種跳法。
思路:假設f(n)是n個台階跳的次數。
f(1) = 1
f(2) 會有兩個跳得方式,一次1階或者2階,這回歸到了問題f(1),f(2) = f(2-1) + f(2-2)
f(3) 會有三種跳得方式,1階、2階、3階,那麼就是第一次跳出1階後面剩下:f(3-1);第一次跳出2階,剩下f(3-2);第一次3階,那麼剩下f(3-3).因此結論是
f(3) = f(3-1)+f(3-2)+f(3-3)
f(n)時,會有n中跳的方式,1階、2階…n階,得出結論:
f(n) = f(n-1)+f(n-2)+…+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + … + f(n-1) == f(n) = 2*f(n-1)
public
intjumpfloorii(int target)
if(target==1)
return
2*jumpfloorii(target-1);
}
青蛙跳台階
乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法。解題思路 1 如果兩種跳法,1階或者2階,那麼假定第一次跳的是一階,那麼剩下的是n 1個台階,跳法是f n 1 2 假定第一次跳的是2階,那麼剩下的是n 2個台階,跳法是f n 2 3 總跳法為 f n f n...
青蛙跳台階
之前面試遇到了這種題目,不會,後來搜尋了一下,感覺分析的很好 青蛙跳乙個n階的台階,每次可以跳1階或者2階,求跳完n階y有多少種方法。分析 n 1,f n 1 n 2,f n 2 n 3,f n 3 n 4,f n 5 可以發現 f n f n 1 f n 2 由此也可以推想 比如要跳到第4階樓梯上...
青蛙跳台階
難易程度 中等 題目描述 乙隻青蛙一次可以跳上1級台階,也可以跳上2級。在不考慮青蛙健康狀況的情況下 求該青蛙跳上乙個n級的台階總共有多少種跳法。思路 在本題的描述中,青蛙的行動只有兩種可能 一次跳乙個台階或者兩個台階,設n階台階的跳法為 f n 如果第一次跳了一階,那麼剩下的n 1階的跳法為f n...