演算法訓練 操作格仔
時間限制:1.0s 記憶體限制:256.0mb
問題描述
有n個格仔,從左到右放成一排,編號為1-n。
共有m次操作,有3種操作型別:
1.修改乙個格仔的權值,
2.求連續一段格仔權值和,
3.求連續一段格仔的最大值。
對於每個2、3操作輸出你所求出的結果。
輸入格式
第一行2個整數n,m。
接下來一行n個整數表示n個格仔的初始權值。
接下來m行,每行3個整數p,x,y,p表示操作型別,p=1時表示修改格仔x的權值為y,p=2時表示求區間[x,y]內格仔權值和,p=3時表示求區間[x,y]內格仔最大的權值。
輸出格式
有若干行,行數等於p=2或3的操作總數。
每行1個整數,對應了每個p=2或3操作的結果。
樣例輸入
4 31 2 3 4
2 1 3
1 4 3
3 1 4
樣例輸出 6
3資料規模與約定
對於20%的資料n <= 100,m <= 200。
對於50%的資料n <= 5000,m <= 5000。
對於100%的資料1 <= n <= 100000,m <= 100000,0 <= 格仔權值 <= 10000。
就是個模板題,過去太懶,欠的賬都是要還的,一點一點來吧。
#include#include#includeusing namespace std;
typedef long long ll;
const ll maxn=1e5+10;
struct nodetree[4*maxn];
void pushdown(int i)
void build(int i,int l,int r)
int mid = (l+r)/2;
build(i<<1,l,mid);
build(i<<1|1,mid+1,r);
pushdown(i);
}void update(int i,int x,int v)
return max(query_max(i<<1,l,r),query_max(i<<1|1,l,r));
}ll query_sum(int i,int l,int r)
return query_sum(i<<1,l,r)+query_sum(i<<1|1,l,r);
}int main()
else if(p==2)
else
}return 0;
}
藍橋杯 操作格仔 線段樹
題目 有n個格仔,從左到右放成一排,編號為1 n。共有m次操作,有3種操作型別 1.修改乙個格仔的權值,2.求連續一段格仔權值和,3.求連續一段格仔的最大值。對於每個2 3操作輸出你所求出的結果。輸入格式 第一行2個整數n,m。接下來一行n個整數表示n個格仔的初始權值。接下來m行,每行3個整數p,x...
藍橋杯 操作格仔 線段樹
剛學習了線段樹,解決區間問題確實是不錯的利器,線段樹實際上就是一棵平衡二叉樹,對於任何操作都能在o long2n 的時間內完成,相比對普通陣列o n 的時間複雜度,有不錯的效率,下面以藍橋網上乙個題操練一下吧。問題描述 有n個格仔,從左到右放成一排,編號為1 n。共有m次操作,有3種操作型別 1.修...
藍橋杯演算法訓練 格仔操作 線段樹
這題設計最基本的線段樹應用,同時考察區間和與區間最值,我採用乙個造樹函式,乙個更新函式和兩個查詢查詢函式,兩個查詢函式分別返回區間和與區間最大值。問題描述 有n個格仔,從左到右放成一排,編號為1 n。共有m次操作,有3種操作型別 1.修改乙個格仔的權值,2.求連續一段格仔權值和,3.求連續一段格仔的...