動態規劃 完全揹包問題

2021-08-14 22:53:58 字數 1239 閱讀 2273

如果是第一種問法,

要求恰好裝滿揹包,那麼在初始化時除了f[0]為0其它f[1..v]均設為-∞,這樣就可以保證最終得到的f[n]是一種恰好裝滿揹包的最優解。

如果並沒有要求必須把揹包裝滿,而是只希望**盡量大,初始化時應該將f[0..v]全部設為0。

為什麼呢?可以這樣理解:初始化的f陣列事實上就是在沒有任何物品可以放入揹包時的合法狀態。如果要求揹包恰好裝滿,那麼此時只有容量為0的揹包可能被價值為0的nothing「恰好裝滿」,其它容量的揹包均沒有合法的解,屬於未定義的狀態,它們的值就都應該是-∞了。如果揹包並非必須被裝滿,那麼任何容量的揹包都有乙個合法解「什麼都不裝」,這個解的價值為0,所以初始時狀態的值也就全部為0了。

這個小技巧完全可以推廣到其它型別的揹包問題,後面也就不再對進行狀態轉移之前的初始化進行講解。

題目

有n種物品和乙個容量為v的揹包,每種物品都有無限件可用。第i種物品的費用是c[i],價值是w[i]。求解將哪些物品裝入揹包可使這些物品的費用總和不超過揹包容量,且價值總和最大。

hdu1114

題意:存錢罐可以往裡面放一些價值小的錢,但是時間久了就不知道裡面有多少錢了,除非你打破它。現在給出空罐子的重量和最滿能裝到多重,然後給出每種硬幣的價值和重量,我們要在不打破它的情況下確認罐子裡最少有多少錢。

#include#include#include#include#includeusing namespace std;

const int n=11111;

const int inf=0x3f3f3f3f;//無窮大

int main()

dp[0]=0;

for(i=1; i<=v; i++)

for(i=1; i<=n; i++)

} if(dp[v] ==inf)

printf("this is impossible.\n");

else

printf("the minimum amount of money in the piggy-bank is %d.\n", dp[v]);

}}

完全揹包:

for (int i=1; i<=n; i++)  

for (int j=1; j<=m; j++)  

}

動態規劃揹包問題 完全揹包

問題描述 有n種物品,每種均有無窮多個。第i個物品的體積為vi,重量為wi。選一些物品裝到容量為c的揹包中,使得揹包內物品在總體積不超過c的前提下重量盡量大。問題分析 開乙個陣列f i j 表示前i種物品中選取若干件物品放入剩餘空間為j的揹包中所能得到的最大重量。每種物品無窮個,所以還要有乙個k遍歷...

動態規劃 揹包問題 完全揹包

有n種物品和乙個容量為v的揹包,每種物品都有無限件可用。第i種物品的費用是w i 價值是v i 求解將哪些物品裝入揹包可使這些物品的費用總和不超過揹包容量,且價值總和最大。貪心 y or n 因為每件物品都可以選取任意件,你也許會想到貪心演算法 選取價值最高的就好了 看上去沒什麼毛病,但是有乙個問題...

動態規劃揹包問題 完全揹包

問題背景描述 你有乙個容量為v的揹包,現在有n種物品供你選擇,每件物品可以選擇無數次,每種物品所佔的空間為c i 價值為v i 現在讓你作出最佳方案,使揹包中的總價值最大。有了之前01揹包的基礎,我們很快就能寫出完全揹包的狀態轉移方程 f i j max 但是這樣的時間複雜度就很大了o v v c ...