母函式模板

2021-08-06 06:00:58 字數 2659 閱讀 7624

母函式,又稱生成函式,是acm競賽中經常使用的一種解題演算法,常用來解決組合方面的題目。

本文講解母函式,但不講解該演算法的基礎理論。讀者隨便找一本組合數學教材便可找到相應的內容,或者直接在網上搜尋一下。

母函式通常解決類似如下的問題:

給5張1元,4張2元,3張5元,要得到15元,有多少種組合?

某些時候會規定至少使用3張1元、1張2元、0張5元。

某些時候會規定有無數張1元、2元、5元。 ……

解題過程

解題時,首先要寫出表示式,通常是多項的乘積,每項由多個x^y組成。如(1+x+x^2)(1+x^4+x^8)(x^5+x^10+x^15)。

通用表示式為

(x^(v[0]*n1[0])+x^(v[0]*(n1[0]+1))+x^(v[0]*(n1[0]+2))+...+x^(v[0]*n2[0]))

(x^(v[1]*n1[1])+x^(v[1]*(n1[1]+1))+x^(v[1]*(n1[1]+2))+...+x^(v[1]*n2[1]))

...(x^(v[k]*n1[k])+x^(v[k]*(n1[k]+1))+x^(v[k]*(n1[k]+2))+...+x^(v[k]*n2[k]))

k對應具體問題中物品的種類數。

v[i]表示該乘積表示式第i個因子的權重,對應於具體問題的每個物品的價值或者權重。

n1[i]表示該乘積表示式第i個因子的起始係數,對應於具體問題中的每個物品的最少個數,即最少要取多少個。

n2[i]表示該乘積表示式第i個因子的終止係數,對應於具體問題中的每個物品的最多個數,即最多要取多少個。

對於表示式(1+x+x^2)(x^8+x^10)(x^5+x^10+x^15+x^20),v[3]=,n1[3]=,n2[3]=。

解題的關鍵是要確定v、n1、n2陣列的值。

通常n1都為0,但有時候不是這樣。

n2有時候是無限大。

之後就實現表示式相乘,從第乙個因子開始乘,直到最後乙個為止。此處通常使用乙個迴圈,迴圈變數為i。每次迭代的計算結果放在陣列a中。計算結束後,a[i]表示權重i的組合數,對應具體問題的組合數。

迴圈內部是把每個因子的每個項和a中的每個項相乘,加到乙個臨時的陣列b的對應位(這裡有兩層迴圈,加上最外層迴圈,總共有三層迴圈),之後就把b賦給a。

這些過程通常直接套用模板即可。

通用模板

下面我直接給出通用模板:

[cpp]view plain

copy

print?

//為計算結果,b為中間結果。

int a[max],b[max];  

//初始化a

memset(a,0,sizeof(a));  

a[0]=1;  

for (int i=1;i<=17;i++)//迴圈每個因子  

//為計算結果,b為中間結果。

int a[max],b[max];

//初始化a

memset(a,0,sizeof(a));

a[0]=1;

for (int i=1;i<=17;i++)//迴圈每個因子

p是可能的最大指數。拿鈔票組合這題來說,如果要求15元有多少組合,那麼p就是15;如果問最小的不能拼出的數值,那麼p就是所有錢加起來的和。p有時可以直接省略。具體請看本文後面給出的例題。

如果n2是無窮,那麼第二層迴圈條件j<=n2[i]可以去掉。

如何提高效率?

用乙個last變數記錄目前最大的指數,這樣只需要在0..last上進行計算。

這裡給出第二個模板:

[cpp]view plain

copy

print?

//初始化a,因為有last,所以這裡無需初始化其他位

a[0]=1;  

int last=0;  

for (int i=0;i  

//初始化a,因為有last,所以這裡無需初始化其他位

a[0]=1;

int last=0;

for (int i=0;i例題

下面看幾個例題。

一、hdu 1085和hdu 1171兩題套用了第二個模板,省略了**中二三層迴圈裡關於last2的條件(其實也可以加上)。

詳見:hdu 1085:

hdu 1171:

二、hdu 1398套用了第乙個模板,因為n2中每一項為無窮大,所以n2陣列就省略了。

詳見:hdu 1398:

三、hdu 2079、hdu 2082和hdu 2110三題直接套用了第二個模板。

詳見:hdu 2079:

hdu 2082:

hdu 2110:

另外,至於什麼時候用第乙個模板,什麼時候用第二個模板,就看題目規模。

通常情況下,第乙個模板就夠用了,上面的那些用第二個模板的題目用第乙個模板同樣能ac。

但如果資料規模比較大(通常不會有這種情況),就要使用第二個模板了。

以上題目n1均為0。

四、hdu 2152是一道n1不為0的題目,我在這裡分別套用第乙個和第二個模板解題。

詳見:hdu 2152:

希望大家讀了我的這篇文章後能有收穫。

母函式模板

研究以下多項式乘法 可以看出 x2項的係數a1a2 a1a3 an 1an中所有的項包括n個元素a1,a2,an中取兩個組合的全體 同理 x3項係數包含了從n個元素a1,a2,an中取3個元素組合的全體 以此類推。特例 若令a1 a2 an 1,在 8 1 式中a1a2 a1a3 an 1an項係數...

母函式模板解釋

母函式模板 1 母函式應用於 形式上說,普通型生成函式用於解決多重集的組合問題,而指數型母函式用於解決多重集的排列問題.現在我們先討論普通生成函式 2 定義 1 x n 1 c n,1 x c n,2 x 2 c n,3 x 3 c n,n n g x a0 a1x a2x 2 anx n 函式g ...

母函式模板核心

至 先理解乙個簡單的 母函式,又稱生成函式,是acm競賽中經常使用的一種解題演算法,常用來解決組合方面的題目。本文講解母函式,但不講解該演算法的基礎理論。讀者隨便找一本組合數學教材便可找到相應的內容,或者直接在網上搜尋一下。母函式通常解決類似如下的問題 給5張1元,4張2元,3張5元,要得到15元,...