分割空間區域 遞推數學問題

2021-08-01 17:04:27 字數 1435 閱讀 4844

註明出處,摘自 

(1) n條直線最多分平面問題

題目大致如:n條直線,最多可以把平面分為多少個區域。

析:可能你以前就見過這題目,這充其量是一道初中的思考題。但乙個型別的題目還是從簡單的入手,才容易發現規律。當有n-1條直線時,平面最多被分成了f(n-1)個區域。則第n條直線要是切成的區域數最多,就必須與每條直線相交且不能有同一交點。這樣就會得到n-1個交點。這些交點將第n條直線分為2條射線和n-2條線斷。而每條射線和線斷將以有的區域一分為二。這樣就多出了2+(n-2)個區域。

故:f(n)=f(n-1)+n

=f(n-2)+(n-1)+n

……=f(1)+1+2+……+n

=n(n+1)/2+1

(2) 折線分平面(hdu2050)

根據直線分平面可知,由交點決定了射線和線段的條數,進而決定了新增的區域數。當n-1條折線時,區域數為f(n-1)。為了使增加的區域最多,則折線的兩邊的線段要和n-1條折線的邊,即2*(n-1)條線段相交。那麼新增的線段數為4*(n-1),射線數為2。但要注意的是,折線本身相鄰的兩線段只能增加乙個區域。

故:f(n)=f(n-1)+4(n-1)+2-1

=f(n-1)+4(n-1)+1

=f(n-2)+4(n-2)+4(n-1)+2

……=f(1)+4+4*2+……+4(n-1)+(n-1)

=2n^2-n+1

(3) 封閉曲線分平面問題

題目大致如設有n條封閉曲線畫在平面上,而任何兩條封閉曲線恰好相交於兩點,且任何三條封閉曲線不相交於同一點,問這些封閉曲線把平面分割成的區域個數。

析:當n-1個圓時,區域數為f(n-1).那麼第n個圓就必須與前n-1個圓相交,則第n個圓被分為2(n-1)段線段,增加了2(n-1)個區域。

故: f(n)=f(n-1)+2(n-1)

=f(1)+2+4+……+2(n-1)

=n^2-n+2

(4)平面分割空間問題(hdu1290)

由二維的分割問題可知,平面分割與線之間的交點有關,即交點決定射線和線段的條數,從而決定新增的區域數。試想在三維中則是否與平面的交線有關呢?當有n-1個平面時,分割的空間數為f(n-1)。要有最多的空間數,則第n個平面需與前n-1個平面相交,且不能有共同的交線。即最多有n-1 條交線。而這n-1條交線把第n個平面最多分割成g(n-1)個區域。(g(n)為(1)中的直線分平面的個數)此平面將原有的空間一分為二,則最多增加g(n-1)個空間。

故:f=f(n-1)+g(n-1) ps:g(n)=n(n+1)/2+1

=f(n-2)+g(n-2)+g(n-1)

……=f(1)+g(1)+g(2)+……+g(n-1)

=2+(1*2+2*3+3*4+……+(n-1)n)/2+(n-1)

=(1+2^2+3^2+4^2+……+n^2-1-2-3-……-n )/2+n+1

=(n^3+5n)/6+1

問題 E 小魚的數學問題 遞推

問題 e 小魚的數學問題 時間限制 1 sec 記憶體限制 128 mb 題目描述 小魚是個江西中醫學院的大一新生,在某個星期二,他的高數老師扔給了他乙個問題。讓她在1天的時間內給出答案。但是小魚不會這問題,現在她來請教你。請你幫她解決這個問題 有n個數,每個數有權值。數學老師定義了區間價值為區間和...

折線分割平面(遞推 數學)

我們看到過很多直線分割平面的題目,今天的這個題目稍微有些變化,我們要求的是n條折線分割平面的最大數目。比如,一條折線可以將平面分成兩部分,兩條折線最多可以將平面分成7部分,具體如下所示 input 輸入資料的第一行是乙個整數c,表示測試例項的個數,然後是c 行資料,每行包含乙個整數n 0output...

2018 6 18 數學問題

define crt secure no deprecate 求正整數n的質因數的個數。120 2 2 2 3 5 所以最後輸出時5 10 9 n至多只存在乙個大於sqrt n 的素因數 這裡只需要篩選到100000就可以 通過素數表,不斷試除,最後求出各個冪指數的和 include 素數表找到10...