O n 求回文串 manacher演算法

2021-07-31 15:55:47 字數 3008 閱讀 3682

p[id * 2 - i]代表的是關於i關於id對稱的點j,陣列p[i] - 1代表插入字元後一i問對稱的回文串的長度;

資料**網路 參見:

問題描述:

輸入乙個字串,求出其中最大的回文子串。子串的含義是:在原串中連續出現的字串片段。回文的含義是:正著看和倒著看相同,如abba和yyxyy。

解析:

這裡介紹o(n)回文子串(manacher)演算法

演算法基本要點:首先用乙個非常巧妙的方式,將所有可能的奇數/偶數長度的回文子串都轉換成了奇數長度:在每個字元的兩邊都插入乙個特殊的符號。比如 abba 變成 #a#b#b#a#, aba變成 #a#b#a#。 為了進一步減少編碼的複雜度,可以在字串的開始加入另乙個特殊字元,這樣就不用特殊處理越界問題,比如$#a#b#a#。

下面以字串12212321為例,經過上一步,變成了 s = "$#1#2#2#1#2#3#2#1#";

然後用乙個陣列 p[i] 來記錄以字元s[i]為中心的最長回文子串向左/右擴張的長度(包括s[i]),比如s和p的對應關係:

s     #  1  #  2  #  2  #  1  #  2  #  3  #  2  #  1  #

p     1   2  1  2  5   2  1  4   1  2  1  6   1  2   1  2  1

(p.s. 可以看出,p[i]-1正好是原字串中回文串的總長度)

下面計算p[i],該演算法增加兩個輔助變數id和mx,其中id表示最大回文子串中心的位置,mx則為id+p[id],也就是最大回文子串的邊界。

這個演算法的關鍵點就在這裡了:如果mx > i,那麼p[i] >= min(p[2 * id - i], mx - i)。

具體**如下:

if(mx >i)

else

當 mx - i > p[j] 的時候,以s[j]為中心的回文子串包含在以s[id]為中心的回文子串中,由於 i 和 j 對稱,以s[i]為中心的回文子串必然包含在以s[id]為中心的回文子串中,所以必有 p[i] = p[j],見下圖。

當 p[j] > mx - i 的時候,以s[j]為中心的回文子串不完全包含於以s[id]為中心的回文子串中,但是基於對稱性可知,下圖中兩個綠框所包圍的部分是相同的,也就是說以s[i]為中心的回文子串,其向右至少會擴張到mx的位置,也就是說 p[i] >= mx - i。至於mx之後的部分是否對稱,就只能乙個乙個匹配了。

對於 mx <= i 的情況,無法對 p[i]做更多的假設,只能p[i] = 1,然後再去匹配了

下面給出原文,進一步解釋演算法為線性的原因

題意:求乙個出現abc cba abc 的形式的回文串,即前面部分和中間部分對稱,中間和後面部分對稱的回文串;

思路:用manacher求出p陣列,然後進行判斷,當對p[i]和p[j]進行判斷就行了;

ps:wa了好幾發,經過除錯發現當p[i]和p[j]都大於j - i的時候,取的是(j - i)/2 * 3;

#include#include#include#include#include#includeusing namespace std;

const int maxn = 100000 + 10;

#define inf 0x7fffffff

#define clr(x,y) memset(x,y,sizeof(x))

typedef long long ll;

int a[maxn];

int b[maxn];

int p[maxn];

int n;

void manacher()

for(int i = 1; i <= 2 * n + 1; i += 2)

int mx = 1,id = 1;

for(int i = 1; i <= 2 * n + 1; i ++)

else

while(b[i - p[i]] == b[i + p[i]] && i - p[i] >= 1 && i + p[i] <= 2 * n + 1)

p[i] ++;

if(i + p[i] > mx)

}// for(int i = 1; i <= 2 * n + 1; i ++)

//

// cout <

O n 時間求 最長回文子串 Manacher演算法

回文字串分為奇回文和偶回文,在字串中間插入任意字元使得串變成奇回文串 暴力思想 肯定是找乙個點往兩邊任意擴充套件,遍歷一次,manacher時間為o n 開乙個陣列p記錄 以點i為中點 的最長回文串的半徑,假設前i 1個點的p都已經求出來來,現在考慮p i 如何推導 重點 r是p 1 p i 1 中...

求最長回文串 Manacher演算法

o n 效率的字串求最長回文串,感覺這個blog上寫的很詳細 有幾個要點 1 先要將字串擴充套件成2 l 1長度的,在每兩個字元之間要加上乙個用不到的字元,比如 方便處理偶數回文串。2 在擴充套件後的字串兩端要加一些特殊字元,防越界。3 ra i 陣列表示以i為中點的最長回文串,mx表示以j 1 j...

PHP實現 Manacher 最大回文子串演算法

題目 給乙個字串,找出它的最長的回文子串行的長度。例如,如果給定的序列是 bbabcbcab 則輸出應該是7,babcbab 是在它的最長回文子串行。輸入 aaaa 1212asdfdsa1144121輸出 47這裡我們還是將其封裝成函式呼叫 回文序列就是正向和反向完全一樣的序列,比如asdfdsa...