ssl 1023
洛谷 p1031 均分紙牌
題目描述
有 n 堆紙牌,編號分別為 1,2,…, n。每堆上有若干張,但紙牌總數必為 n 的倍數。可以在任一堆上取若於張紙牌,然後移動。
移牌規則為:在編號為 1 堆上取的紙牌,只能移到編號為 2 的堆上;在編號為 n 的堆上取的紙牌,只能移到編號為 n-1 的堆上;其他堆上取的紙牌,可以移到相鄰左邊或右邊的堆上。
現在要求找出一種移動方法,用最少的移動次數使每堆上紙牌數都一樣多。
例如 n=4,4 堆紙牌數分別為:
①9②8③17④6
移動3次可達到目的:
從 ③ 取 4 張牌放到 ④ (9 8 13 10) -> 從 ③ 取 3 張牌放到 ②(9 11 10 10)-> 從 ② 取 1 張牌放到①(10 10 10 10)。
分析
只要能想到將每堆牌的數量與平均值的差形成乙個正負關係,那就成功了一半!
排序從大到小
於是有這樣的牌堆情況:
-1 2 3 4 平均值2
排序後:4 3 2 -1
然後將4多的部分移到3那裡:
2 5 2 -1
然後將3多的部分移到2那裡:
2 2 5 -1
以此類推:
2 2 2 -1+3=2
就完成了!極其簡單。
var
a:array[1..100]of longint;
n:longint;
procedure
init;
var i,sum:longint;
begin
sum:=0;
readln(n);
for i:=1
to n do
begin
read(a[i]);sum:=sum+a[i]; end;
for i:=1
to n do a[i]:=a[i]-sum div n;
end;
procedure
main;
var i,s:longint;
begin
s:=0;
for i:=1
to n do
if a[i]<>0
then
begin
a[i+1]:=a[i+1]+a[i];
a[i]:=0;
inc(s);
end;
writeln(s);
end;
begin
init;
main;
end.
關卡2 2 交叉模擬 p1031均分紙牌
p1031均分紙牌 題目描述 有n堆紙牌,編號分別為 1,2,n。每堆上有若干張,但紙牌總數必為n的倍數。可以在任一堆上取若干張紙牌,然後移動。移牌規則為 在編號為1的堆上取的紙牌,只能移到編號為 2 的堆上 在編號為 n 的堆上取的紙牌,只能移到編號為n 1的堆上 其他堆上取的紙牌,可以移到相鄰左...
貪心 均分紙牌
時間限制 1 sec 記憶體限制 64 mb 提交 164 解決 95 提交 狀態 討論版 有n堆紙牌,編號分別為1,2,n。每堆上有若干張,但紙牌總數必為n的倍數。可以在任一堆上取若干張紙牌,然後移動。移牌規則為 在編號為1堆上取的紙牌,只能移到編號為2的堆上 在編號為n的堆上取的紙牌,只能移到編...
均分紙牌問題
有n堆紙牌,編號分別為1,2,n。每堆上有若干張,但紙牌總數必為n的倍數。可以在任一堆上取若干張紙牌,然後移動。移牌的規則為 在編號為1上取的紙牌,只能移到編號為2的堆上 在編號為n的堆上取的紙牌,只能移到編號為n 1的堆上 其他堆上取的紙牌,可以移到相鄰左邊或右邊的堆上。現在要求找出一種移動方法,...