形式語言與自動機理論總結

2021-06-22 00:06:57 字數 3110 閱讀 1719

一:圖形總結。

重點:喬姆斯基體系

四大文法之間的關係:

二:文字詳解。

1,集合關係(並、交、補、差、笛卡爾積、冪積、二元關係)

1) 笛卡爾積:axb,即都分別對應的乘積。

例1-1, a=,b= 

則  axb=

2)冪積:2^a,即所有的子集。

例1-2,a=,

則2^a=, , , , , , }

3)二元關係:任意的r∈a

×b,r

是a到b

的二元關係

2,句子(前字尾)

例2-1,句子

abaabb

字首:ε,a

,ab,aba

,abaa

,abaab

,abaabb

真字首:ε,

a,ab,

aba,

abaa

,abaab

字尾:ε,b

,bb,abb

,aabb

,baabb

,abaabb

真字尾:ε,

b,bb,

abb,

aabb

,baabb

3,文法的構造。

例3-1,l(g):

s->asb|ab    (n,m>=0時,s->asb|ε   )

例3-2,l(g): 

s->ab   a->aab|ε     b->abb|ε

4,(1)確定的有窮狀態自動機dfa。

特點:1),初態唯一,終態可有多個。

2),任意狀態任意射出弧上的元素均不相等

3),識別物件為空時,初態為終態。

構造:例4-1,l=* }

最小化:

掃瞄所有的狀態對,找出所有的可區分的狀態對,不可取分的狀態對一定是等價的。

(2)不確定的有窮狀態自動機nfa。

特點:1),初態不唯一。

2),同一狀態射出弧上的標記可以相同

3),初態可以為終態。

(3)ε

-nfa

是在nfa

的基礎上,允許直接根據當前狀態變換到新的狀態而不考慮輸入帶上的符號

(4)等價性

1), nfa與dfa等價、

ε-nfa

與nfa

等價(nfa

與dfa

等價,ε

-nfa

與nfa

等價,統稱它們為

fa)2),fa與正則文法等價(fa

和左線性文法、右線性文法等價)

對於乙個輸入字元,nfa

與dfa

的差異是前者可以進入若干個狀態,而後者只能進入乙個惟一的狀態。雖然從dfa

看待問題的角度來說,

nfa在某一時刻同時進入若干個狀態,但是,這若干個狀態合在一起的

「總效果

」相當於它處於這些狀態對應的乙個「

綜合狀態」

5,正規表示式re-----fa的轉換規則

6,正則語言rl

(1)封閉性

1)正則語言的並、交、補是正則語言。

2)正則語言的乘積(連線)是正則語言。

3)正則語言的差是正則語言。

4)正則語言的閉包是正則語言。

5)正則語言的商是正則語言。

6)正則語言的同態是正則語言。

7)正則語言的逆轉是正則語言。

附:上下文無關語言cfl的封閉性

1)並、乘積、閉包是封閉的

2)交、補不封閉

(2)幫浦引理

dfa在處理乙個足夠長的句子的過程中,必定會重複地經過某乙個狀態。換句話說,在

dfa的狀態轉移圖中,必定存在一條含有迴路的從啟動狀態到某個終止狀態的路。由於是迴路,所以,

dfa可以根據實際需要沿著這個迴路迴圈執行,相當於這個迴路中弧上的標記構成的非空子串可以重複任意多次。

(3)等價模型

7,上下文無關語言cfl

(1)語法樹

1)每個句型至少存在一顆語法樹,每顆語法樹至少存在乙個推導。

2)每顆樹的葉子組成句型(句型就是我們的結果)。

3)每顆簡單子樹的葉子組成簡單短語。

4)最左簡單子樹的葉子組成控制代碼。

(2)cfg的化簡

1)去無用符號。

首先刪除不可終止的,再刪除不可到達的

2)去空產生式

先求可空變數,再看空產生式會對哪些產生式有影響

3)去單一產生式

可能會產生新的無用符號或單一產生式

8,圖靈機與計算機

(1)用計算機模擬圖靈機,不是任何的圖靈機都能被計算機來模擬

模擬步驟: 1),在計算機上開闢較大的一維陣列來模擬輸入帶

2),將輸入帶存入陣列

3),轉換函式用什麼資料結構儲存

4),用有窮的編制電腦程式,在輸入帶上模擬圖靈機執行

(2)圖靈機比計算機速度慢

(3)執行時間

形式語言與自動機理論總結

一 圖形總結。重點 喬姆斯基體系 四大文法之間的關係 二 文字詳解。1,集合關係 並 交 補 差 笛卡爾積 冪積 二元關係 1 笛卡爾積 axb,即都分別對應的乘積。例1 1,a b 則 axb 2 冪積 2 a,即所有的子集。例1 2,a 則2 a 3 二元關係 任意的r a b,r是a到b的二元...

形式語言與自動機理論總結

一 圖形總結。重點 喬姆斯基體系 四大文法之間的關係 二 文字詳解。1,集合關係 並 交 補 差 笛卡爾積 冪積 二元關係 1 笛卡爾積 axb,即都分別對應的乘積。例1 1,a b 則 axb 2 冪積 2 a,即所有的子集。例1 2,a 則2 a 3 二元關係 任意的r a b,r 是a到b 的...

形式語言與自動機複習 4 7

1.dfa轉正則語言 1.直接轉 需要注意的是,我們經常會處理到一p s p的情況,讓我們分析一下這個本質是什麼 可以把p看作p t看作p 那麼實際上 p s p 只會變成 p t p p 而p s q並沒有受到 p s t的影響 這也就是為什麼不會這麼迴圈的原因 如下 q0 q2 q0只會影響作用...