數學史上的3次危機

2021-06-20 13:52:25 字數 2044 閱讀 8488

無理數的發現──第一次數學危機  

大約西元前5世紀,不可通約量的發現導致了畢達哥拉斯悖論。

當時的畢達哥拉斯學派重視自然及社會中不變因素的研究,把幾何、算術、天文、**稱為"四藝",在其中追求宇宙的和諧規律性。他們認為:宇宙間一切事物都可歸結為整數或整數之比,畢達哥拉斯學派的一項重大貢獻是證明了勾股定理,但由此也發現了一些直角三角形的斜邊不能表示成整數或整數之比(不可通約)的情形,如直角邊長均為1的直角三角形就是如此。

這一悖論直接觸犯了畢氏學派的根本信條,導致了當時認識上的"危機",從而產生了第一次數學危機。 

到了西元前370年,這個矛盾被畢氏學派的歐多克斯通過給比例下新定義的方法解決了。他的處理不可通約量的方法,出現在歐幾里得《原本》第5卷中。歐多克斯和狄德金於2023年給出的無理數的解釋與現代解釋基本一致。今天中學幾何課本中對相似三角形的處理,仍然反映出由不可通約量而帶來的某些困難和微妙之處。

第一次數學危機對古希臘的數學觀點有極大衝擊。這表明,幾何學的某些真理與算術無關,幾何量不能完全由整數及其比來表示,反之卻可以由幾何量來表示出來,整數的權威地位開始動搖,而幾何學的身份公升高了。危機也表明,直覺和經驗不一定靠得住,推理證明才是可靠的,從此希臘人開始重視演譯推理,並由此建立了幾何公理體系,這不能不說是數學思想上的一次巨大革命!

無窮小是零嗎?──第二次數學危機 

18世紀,微分法和積分法在生產和實踐上都有了廣泛而成功的應用,大部分數學家對這一理論的可靠性是毫不懷疑的。 

2023年,英國哲學家、大主教貝克萊發表《分析學家或者向乙個不信正教數學家的進言》,矛頭指向微積分的基礎--無窮小的問題,提出了所謂貝克萊悖論。他指出:"牛頓在求xn的導數時,採取了先給x以增量0,應用二項式(x+0)n,從中減去xn以求得增量,並除以0以求出xn的增量與x的增量之比,然後又讓0消逝,這樣得出增量的最終比。這裡牛頓做了違反矛盾律的手續──先設x有增量,又令增量為零,也即假設x沒有增量。"他認為無窮小dx既等於零又不等於零,召之即來,揮之即去,這是荒謬,"dx為逝去量的靈魂"。無窮小量究竟是不是零?無窮小及其分析是否合理?由此而引起了數學界甚至哲學界長達乙個半世紀的爭論。導致了數學史上的第二次數學危機。 

18世紀的數學思想的確是不嚴密的,直觀的強調形式的計算而不管基礎的可靠。其中特別是:沒有清楚的無窮小概念,從而導數、微分、積分等概念也不清楚,無窮大概念不清楚,以及發散級數求和的任意性,符號的不嚴格使用,不考慮連續就進行微分,不考慮導數及積分的存在性以及函式可否展成冪級數等等。

直到19世紀20年代,一些數學家才比較關注於微積分的嚴格基礎。從波爾查諾、阿貝爾、柯西、狄里赫利等人的工作開始,到威爾斯特拉斯、戴德金和康托的工作結束,中間經歷了半個多世紀,基本上解決了矛盾,為數學分析奠定了嚴格的基礎。

悖論的產生---第三次數學危機  

數學史上的第三次危機,是由2023年的突然衝擊而出現的,到現在,從整體來看,還沒有解決到令人滿意的程度。這次危機是由於在康托的一般集合理論的邊緣發現悖論造成的。由於集合概念已經滲透到眾多的數學分支,並且實際上集合論成了數學的基礎,因此集合論中悖論的發現自然地引起了對數學的整個基本結構的有效性的懷疑。 

2023年,福爾蒂揭示了集合論中的第乙個悖論。兩年後,康托發現了很相似的悖論。2023年,羅素又發現了乙個悖論,它除了涉及集合概念本身外不涉及別的概念。羅素悖論曾被以多種形式通俗化。其中最著名的是羅素於2023年給出的,它涉及到某村理髮師的困境。理髮師宣布了這樣一條原則:他給所有不給自己刮臉的人刮臉,並且,只給村里這樣的人刮臉。當人們試圖回答下列疑問時,就認識到了這種情況的悖論性質:"理髮師是否自己給自己刮臉?"如果他不給自己刮臉,那麼他按原則就該為自己刮臉;如果他給自己刮臉,那麼他就不符合他的原則。 

羅素悖論使整個數學大廈動搖了。無怪乎弗雷格在收到羅素的信之後,在他剛要出版的《算術的基本法則》第2卷末尾寫道:"一位科學家不會碰到比這更難堪的事情了,即在工作完成之時,它的基礎垮掉了,當本書等待印出的時候,羅素先生的一封信把我置於這種境地"。於是終結了近12年的刻苦鑽研。

承認無窮集合,承認無窮基數,就好像一切災難都出來了,這就是第三次數學危機的實質。儘管悖論可以消除,矛盾可以解決,然而數學的確定性卻在一步一步地喪失。現代公理集合論的大堆公理,簡直難說孰真孰假,可是又不能把它們都消除掉,它們跟整個數學是血肉相連的。所以,第三次危機表面上解決了,實質上更深刻地以其它形式延續著。

數學史上的三大危機

在數學的歷史上,有過三次比較重大的危機,第一次是關於無理數的,這次危機把畢達哥拉斯的數學王朝推翻,第二次數學危機是關於微積分的,是常識跟數學之間的契合的問題 第三次數學危機發生在二十世紀初,這次危機涉及到了數學中最基礎的大廈,差點把整個數學理論推翻重來。畢達哥拉斯學派在數學上的一項重大貢獻是證明了畢...

數學歷史上的三次危機

經濟上有危機,歷史上數學也有三次危機。第一次危機發生在西元前580 568年之間的古希臘,數學家畢達哥拉斯建立了畢達哥拉斯學派。這個學派集宗教 科學和哲學於一體,該學派人數固定,知識保密,所有發明創造都歸於學派領袖。當時人們對有理數的認識還很有限,對於無理數的概念更是一無所知,畢達哥拉斯學派所說的數...

關於數學基礎的危機

今年年初,國家教育部發布普通高中數學課程的新標準,全面培養學生的數學核心素養,不再沿襲注重能力發展的老模式。這是巨大的進步!大家知道,進入20世紀,古老的數學基礎研究遇到 煩 也叫 危機 直至今日,數學基礎的危機過去了嗎?正確的答案是 沒有過去。數學基礎的危機只是部分地得到了解決,留給我們的下一代,...