約瑟夫環問題的數學解法

2021-05-11 06:36:28 字數 1299 閱讀 2327

無論是用鍊錶實現還是用陣列實現都有乙個共同點:要模擬整個遊戲過程,不僅程式寫起來比較煩,而且時間複雜度高達o(nm),當n,m非常大(例如上百萬,上千萬)的時候,幾乎是沒有辦法在短時間內出結果的。我們注意到原問題僅僅是要求出最後的勝利者的序號,而不是要讀者模擬整個過程。因此如果要追求效率,就要打破常規,實施一點數學策略。

為了討論方便,先把問題稍微改變一下,並不影響原意:

問題描述:n個人(編號0~(n-1)),從0開始報數,報到(m-1)的退出,剩下的人繼續從0開始報數。求勝利者的編號。

我們知道第乙個人(編號一定是m%n-1) 出列之後,剩下的n-1個人組成了乙個新的約瑟夫環(以編號為k=m%n的人開始):

k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2

並且從k開始報0。

現在我們把他們的編號做一下轉換:

k     --> 0

k+1   --> 1

k+2   --> 2

...

...

k-2   --> n-2

k-1   --> n-1

變換後就完完全全成為了(n-1)個人報數的子問題,假如我們知道這個子問題的解:例如x是最終的勝利者,那麼根據上面這個表把這個x變回去不剛好就是n個人情況的解嗎?!!變回去的公式很簡單,相信大家都可以推出來:x'=(x+k)%n

如何知道(n-1)個人報數的問題的解?對,只要知道(n-2)個人的解就行了。(n-2)個人的解呢?當然是先求(n-3)的情況 ---- 這顯然就是乙個倒推問題!好了,思路出來了,下面寫遞推公式:

令f[i]表示i個人玩遊戲報m退出最後勝利者的編號,最後的結果自然是f[n]

遞推公式

f[1]=0;

f[i]=(f[i-1]+m)%i;  (i>1)

有了這個公式,我們要做的就是從1-n順序算出f[i]的數值,最後結果是f[n]。因為實際生活中編號總是從1開始,我們輸出f[n]+1

由於是逐級遞推,不需要儲存每個f[i],程式也是異常簡單:

#include

int main()

這個演算法的時間複雜度為o(n),相對於模擬演算法已經有了很大的提高。算n,m等於一百萬,一千萬的情況不是問題了。可見,適當地運用數學策略,不僅可以讓程式設計變得簡單,而且往往會成倍地提高演算法執行效率。

約瑟夫環問題數學解法

首先一開始的序列 序列1 1,2,3,4,n 2,n 1,n 此時出佇列的第乙個人,位置為k,號碼肯定是m n。這個應該沒有問題,也就是取餘操作使得陣列類似能夠有迴圈的功能。此時序列2 1,2,3,4,k 1,k 1,n 2,n 1,n 此時k出佇列,序列2中為n 1個人了。根據序列2,得到序列3 ...

約瑟夫環數學解法

無論是用鍊錶實現還是用陣列實現都有乙個共同點 要模擬整個遊戲過程,不僅程式寫起來比較煩,而且時間複雜度高達o nm 當n,m非常大 例如上百萬,上千萬 的時候,幾乎是沒有辦法在短時間內出結果的。我們注意到原問題僅僅是要求出最後的勝利者的序號,而不是要讀者模擬整個過程。因此如果要追求效率,就要打破常規...

約瑟夫環 數學解法

約瑟夫環是乙個數學的應用問題 已知n個人 以編號1,2,3 n分別表示 圍坐在一張圓桌周圍 從編號為k的人開始報數,數到m的那個人出列 他的下乙個人又從1開始報數,數到m的那個人又出列 依此規律重複下去,直到圓桌周圍的人全部出列。f 1 0 f i f i 1 m i i 1 includeusin...