傅利葉變換的物理意義

2021-05-02 13:38:18 字數 1870 閱讀 6574

1

、為什麼要進行傅利葉變換,其物理意義是什麼?

傅利葉變換是數字訊號處理領域一種很重要的演算法。要知道傅利葉變換演算法的意義,首先要了解傅利葉原理的意義。傅利葉原理表明:任何連續測量的時序或訊號,都可以表示為不同頻率的正弦波訊號的無限疊加。而根據該原理創立的傅利葉變換演算法利用直接測量到的原始訊號,以累加方式來計算該訊號中不同正弦波訊號的頻率、振幅和相位。

和傅利葉變換演算法對應的是反傅利葉變換演算法。該反變換從本質上說也是一種累加處理,這樣就可以將單獨改變的正弦波訊號轉換成乙個訊號。

因此,可以說,傅利葉變換將原來難以處理的時域訊號轉換成了易於分析的頻域訊號(訊號的頻譜),可以利用一些工具對這些頻域訊號進行處理、加工。最後還可以利用傅利葉反變換將這些頻域訊號轉換成時域訊號。

從現代數學的眼光來看,傅利葉變換是一種特殊的積分變換。它能將滿足一定條件的某個函式表示成正弦基函式的線性組合或者積分。在不同的研究領域,傅利葉變換具有多種不同的變體形式,如連續傅利葉變換和離散傅利葉變換。

正是由於上述的良好性質,傅利葉變換在物理學、數論、組合數學、訊號處理、概率、統計、密碼學、聲學、光學等領域都有著廣泛的應用。 2

、影象傅利葉變換的物理意義

影象的頻率是表徵影象中灰度變化劇烈程度的指標,是灰度在平面空間上的梯度。如:大面積的沙漠在影象中是一片灰度變化緩慢的區域,對應的頻率值很低;而對於地表屬性變換劇烈的邊緣區域在影象中是一片灰度變化劇烈的區域,對應的頻率值較高。傅利葉變換在實際中有非常明顯的物理意義,設f是乙個能量有限的模擬訊號,則其傅利葉變換就表示f的譜。從純粹的數學意義上看,傅利葉變換是將乙個函式轉換為一系列週期函式來處理的。從物理效果看,傅利葉變換是將影象從空間域轉換到頻率域,其逆變換是將影象從頻率域轉換到空間域。換句話說,傅利葉變換的物理意義是將影象的灰度分布函式變換為影象的頻率分布函式,傅利葉逆變換是將影象的頻率分布函式變換為灰度分布函式

傅利葉變換以前,影象(未壓縮的點陣圖)是由對在連續空間(現實空間)上的取樣得到一系列點的集合,我們習慣用乙個二維矩陣表示空間上各點,則影象可由

z=f(x,y)

來表示。由於空間是三維的,影象是二維的,因此空間中物體在另乙個維度上的關係就由梯度來表示,這樣我們可以通過觀察影象得知物體在三維空間中的對應關係。為什麼要提梯度?因為實際上對影象進行二維傅利葉變換得到頻譜圖,就是影象梯度的分布圖,當然頻譜圖上的各點與影象上各點並不存在一一對應的關係,即使在不移頻的情況下也是沒有。傅利葉頻譜圖上我們看到的明暗不一的亮點,實際上影象上某一點與鄰域點差異的強弱,即梯度的大小,也即該點的頻率的大小(可以這麼理解,影象中的低頻部分指低梯度的點,高頻部分相反)。一般來講,梯度大則該點的亮度強,否則該點亮度弱。這樣通過觀察傅利葉變換後的頻譜圖,也叫功率圖,我們首先就可以看出,影象的能量分布,如果頻譜圖中暗的點數更多,那麼實際影象是比較柔和的(因為各點與鄰域差異都不大,梯度相對較小),反之,如果頻譜圖中亮的點數多,那麼實際影象一定是尖銳的,邊界分明且邊界兩邊畫素差異較大的。對頻譜移頻到原點以後,可以看出影象的頻率分布是以原點為圓心,對稱分布的。將頻譜移頻到圓心除了可以清晰地看出影象頻率分布以外,還有乙個好處,它可以分離出有週期性規律的干擾訊號,比如正弦干擾,一副帶有正弦干擾,移頻到原點的頻譜圖上可以看出除了中心以外還存在以某一點為中心,對稱分布的亮點集合,這個集合就是干擾噪音產生的,這時可以很直觀的通過在該位置放置帶阻濾波器消除干擾

另外我還想說明以下幾點: 1

、影象經過二維傅利葉變換後,其變換係數矩陣表明:

若變換矩陣

fn原點設在中心,其頻譜能量集中分布在變換係數短陣的中心附近

(圖中陰影區

)。若所用的二維傅利葉變換矩陣

fn的原點設在左上角,那麼影象訊號能量將集中在係數矩陣的四個角上。這是由二維傅利葉變換本身性質決定的。同時也表明一股影象能量集中低頻區域。 2

、變換之後的影象在原點平移之前四角是低頻,最亮,平移之後中間部分是低頻,最亮,亮度大說明低頻的能量大(幅角比較大)

傅利葉變換的物理意義

1 為什麼要進行傅利葉變換,其物理意義是什麼?傅利葉變換是數字訊號處理領域一種很重要的演算法。要知道傅利葉變換演算法的意義,首先要了解傅利葉原理的意義。傅利葉原理表明 任何連續測量的時序或訊號,都可以表示為不同頻率的正弦波訊號的無限疊加。而根據該原理創立的傅利葉變換演算法利用直接測量到的原始訊號,以...

傅利葉變換的物理意義

原文 1 為什麼要進行傅利葉變換,其物理意義是什麼?傅利葉變換是數字訊號處理領域一種很重要的演算法。要知道傅利葉變換演算法的意義,首先要了解傅利葉原理的意義。傅利葉原理表明 任何連續測量的時序或訊號,都可以表示為不同頻率的正弦波訊號的無限疊加。而根據該原理創立的傅利葉變換演算法利用直接測量到的原始訊...

傅利葉變換的物理意義

傅利葉變換是數字訊號處理領域一種很重要的演算法。要知道傅利葉變換演算法的意義,首先要了解傅利葉原理的意義。傅利葉原理表明 任何連續測量的時序或訊號,都可以表示為不同頻率的正弦波訊號的無限疊加。而根據該原理創立的傅利葉變換演算法利用直接測量到的原始訊號,以累加方式來計算該訊號中不同正弦波訊號的頻率 振...