問題描述:n個人(編號從1到n),從1開始報數,報到m的退出,剩下的人繼續從1開始報數。求勝利者的編號。
1:#include
2:#include
3:4:int
main()
5:16:17:printf("依次出列的號碼為:");
18:int
count;
19:for(count=0,temp=0 ; count
if( (i+1)== m )
28:32: ++i;33: }34:printf("%d\t",temp+1);
35:if(count == n-1)
36:39: }40:41:return 0;
42: }43:
(注:circlist.h標頭檔案事先已經寫好,是迴圈鍊錶)
1:#include
"circlist.h"
2:3:template
t>
4:void
josephus(circlist
&js,int
n,int
m) //n---總數,m---目標數
5:18: }19:cout
<<"出列的人是:"
link = p->link; 21:delete
p;
22:p = pre->link;
23:if(p == js.gethead())
24:28: }29: }30:31:void
main()
32:41:
無論是用鍊錶實現還是用陣列實現都有乙個共同點:要模擬整個遊戲過程,不僅程式寫起來比較煩,而且時間複雜度高達o(nm),當n,m非常大(例如上百萬,上千萬)的時候,幾乎是沒有辦法在短時間內出結果的。為了討論方便,先把問題稍微改變一下,並不影響原意:
問題描述:n個人(編號0~(n-1)),從0開始報數,報到(m-1)的退出,剩下的人繼續從0開始報數。求勝利者的編號。
我們知道第乙個人(編號一定是m%n-1) 出列之後,剩下的n-1個人組成了乙個新的約瑟夫環(以編號為k=m%n的人開始):
k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2
並且從k開始報0。
現在我們把他們的編號做一下轉換:
k --> 0
k+1 --> 1
k+2 --> 2
...
...
k-2 --> n-2
k-1 --> n-1
變換後就完完全全成為了(n-1)個人報數的子問題,假如我們知道這個子問題的解:例如x是最終的勝利者,那麼根據上面這個表把這個x變回去不剛好就是n個人情況的解嗎!!變回去的公式很簡單,相信大家都可以推出來:x'=(x+k)%n
如何知道(n-1)個人報數的問題的解對,只要知道(n-2)個人的解就行了。(n-2)個人的解呢當然是先求(n-3)的情況 ---- 這顯然就是乙個倒推問題!好了,思路出來了,下面寫遞推公式:
令f[i]表示i個人玩遊戲報m退出最後勝利者的編號,最後的結果自然是f[n]
遞推公式
f[1]=0;
f[i]=(f[i-1]+m)%i; (i>1)
有了這個公式,我們要做的就是從1-n順序算出f[i]的數值,最後結果是f[n]。因為實際生活中編號總是從1開始,我們輸出f[n]+1
由於是逐級遞推,不需要儲存每個f[i],程式也是異常簡單:
1:#include
2:3:int
main()
4:
約瑟夫問題 約瑟夫環
約瑟夫 問題 有時也稱為約瑟夫斯置換,是乙個出現在電腦科學和數學中的問題。在計算機程式設計的演算法中,類似問題又稱為約瑟夫環。又稱 丟手絹問題 據說著名猶太歷史學家 josephus有過以下的故事 在羅馬人占領喬塔帕特後,39 個猶太人與josephus及他的朋友躲到乙個洞中,39個猶太人決定寧願死...
約瑟夫問題 約瑟夫環
約瑟夫問題 有時也稱為約瑟夫斯置換,是乙個出現在電腦科學和數學中的問題。在計算機程式設計的演算法中,類似問題又稱為約瑟夫環。又稱 丟手絹問題 據說著名猶太歷史學家 josephus有過以下的故事 在羅馬人占領喬塔帕特後,39 個猶太人與josephus及他的朋友躲到乙個洞中,39個猶太人決定寧願死也...
約瑟夫環問題
約瑟夫環問題 問題描述 編號是1,2,n的n個人按照順時針方向圍坐一圈,每個人持有乙個密碼 正整數 一開始任選乙個正整數作為報數上限值m,從第乙個人開始順時針方向自1開始順序報數,報到m時停止報數。報m的人出列,將他的密碼作為新的m值,從他在順時針方向的下乙個人開始重新從1報數,如此下去,直到所有人...