矩陣奇異值分解SVD

2022-09-05 16:12:08 字數 501 閱讀 9789

矩陣分解有兩種一種是特徵值分解,但是其針對方陣,所以提出了奇異值分解。

分解過程為:

u的列組成一套對a的正交"輸入"或"分析"的基向量。這些向量是

的特徵向量。

v的列組成一套對a的正交"輸出"的基向量。這些向量是

的特徵向量

得到的是右奇異向量,

是奇異值,u是左奇異向量,

奇異值跟特徵值類似,在矩陣σ中也是從大到小排列,而且σ的減少特別的快,在很多情況下,前10%甚至1%的奇異值的和就佔了全部的奇異值之和的99%以上了。也就是說,我們也可以用前k大的奇異值來近似描述矩陣,這裡定義一下部分奇異值分解

SVD矩陣奇異值分解

不正之處,歡迎指正!矩陣的奇異值分解是線性代數中一種重要的矩陣分解,在訊號處理,統計學等領域中有著重要的應用。在大學裡面的線性代數的課程中一般都是會有svd分解相關的知識的。但是往往只是涉及到理論上的知識體系,並沒有多少實際應用的背景,所以結果就是學了沒多久就會忘。奇異值分解可以將乙個比較複雜的矩陣...

奇異值分解 SVD

最近不小心接觸到了svd,然後認真看下去之後發現這東西真的挺強大的,把乙個推薦問題轉化為純數學矩陣問題,看了一些部落格,把乙個寫個比較具體的博文引入進來,給自己看的,所以把覺得沒必要的就去掉了,博文下面附原始部落格位址。一 基礎知識 1.矩陣的秩 矩陣的秩是矩陣中線性無關的行或列的個數 2.對角矩陣...

SVD奇異值分解

原文出處 今天我們來講講奇異值分解和它的一些有意思的應用。奇異值分解是乙個非常,非常,非常大的話題,它的英文是 singular value decomposition,一般簡稱為 svd。下面先給出它大概的意思 對於任意乙個 m n 的矩陣 m 不妨假設 m n 它可以被分解為 m udv t 其...