最短路徑 Dijkstra演算法

2022-08-15 21:42:15 字數 1040 閱讀 5309

1.定義

dijkstra(迪傑斯特拉)演算法是典型的單源最短路徑演算法,用於計算乙個節點到其他所有節點的最短路徑。

2.演算法描述

1)演算法思想:設g=(v,e)是乙個帶權有向圖,把圖中頂點集合v分成兩組,第一組為已求出最短路徑的頂點集合(用s表示,初始時s中只有乙個源點,以後每求得一條最短路徑 , 就將加入到集合s中,直到全部頂點都加入到s中,演算法就結束了),第二組為其餘未確定最短路徑的頂點集合(用u表示),按最短路徑長度的遞增次序依次把第二組的頂點加入s中。在加入的過程中,總保持從源點v到s中各頂點的最短路徑長度不大於從源點v到u中任何頂點的最短路徑長度。此外,每個頂點對應乙個距離,s中的頂點的距離就是從v到此頂點的最短路徑長度,u中的頂點的距離,是從v到此頂點只包括s中的頂點為中間頂點的當前最短路徑長度。

3.參考**

#include

#include

#include

#include

using namespace std;

const int inf = 0x7fffffff;

const int n = 1024;    //結點最大數量

int edge[n][n];     //儲存圖

bool visited[n];    //記錄結點是否用於搜尋過

int dis[n];     //各結點到源結點的最短距離

void init(int n)

else

}dis[i] = inf;

}memset(visited, false, sizeof(visited));

}void dijkstra(int source,int n)

for(int i = 1; i<= n-1; i++)

}visited[num] = true;

for(int k = 1; k <= n; k++) }}

}}int main()

dijkstra(source,n);

for(int i = 1; i <= n; i++)

return 0;

}

Dijkstra最短路徑演算法

基本思路是 選擇出發點相鄰的所有節點中,權最小的乙個,將它的路徑設定為確定。其他節點的路徑需要儲存起來。然後從剛剛確認的那個節點的相鄰節點,算得那些節點的路徑長。然後從所有未確定的節點中選擇乙個路徑最短的設定為確定。重複上面步驟即可。void dijkstra graph g,string v fl...

Dijkstra最短路徑演算法

引入 dijkstra 迪傑斯特拉 演算法是典型的最短路徑路由演算法,用於計算乙個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴充套件,直到擴充套件到終點為止。dijkstra演算法能得出最短路徑的最優解,但由於它遍歷計算的節點很多,所以效率低。package dijkstra p...

最短路徑 Dijkstra演算法

最短路徑 描述 已知乙個城市的交通路線,經常要求從某一點出發到各地方的最短路徑。例如有如下交通圖 則從a出發到各點的最短路徑分別為 b 0c 10 d 50 e 30 f 60 輸入 輸入只有乙個用例,第一行包括若干個字元,分別表示各頂點的名稱,接下來是乙個非負的整數方陣,方陣維數等於頂點數,其中0...