用初等行變換化行最簡形的技巧bai
1. 一般是從左到右,一列一列處理
2. 盡量避免分數的運算
具體操作:
1. 看本列中非零行的首非零元
若有數a是其餘數的公因子, 則用這個數把第本列其餘的數消成零.
2. 否則, 化出乙個公因子
給你個例子看看吧.
例:2 -1 -1 1 2
1 1 -2 1 4
4 -6 2 -2 4
3 6 -9 7 9
--a21=1 是第1列中數的公因子, 用它將其餘數化為0 (*)
r1-2r2, r3-4r2, r4-3r2 得
0 -3 3 -1 -6
1 1 -2 1 4
0 -10 10 -6 -12
0 3 -3 4 -3
--第1列處理完畢
--第2列中非零行的首非零元是:a12=-3,a32=10,a42=3
-- 沒有公因子, 用r3+3r4w化出乙個公因子
-- 但若你不怕分數運算, 哪就可以這樣:
-- r1*(-1/3),r2-r1,r3+10r1,r4-3r1
-- 這樣會很辛苦的 ^_^
r1+r4,r3+3r4 (**)
0 0 0 3 -9
1 1 -2 1 4
0 -1 1 6 -21
0 3 -3 4 -3
--用a32把第2列中其餘數化成0
--順便把a14(下次要處理第4列)化成1
r2+r3, r4+3r3, r1*(1/3)
0 0 0 1 -3
1 0 -1 7 -17
0 -1 1 6 -21
0 0 0 22 -66
--用a14=1將第4列其餘數化為0
r2-7r1, r3-6r1, r4-22r1
0 0 0 1 -3
1 0 -1 0 4
0 -1 1 0 -3
0 0 0 0 0
--首非零元化為1
r3*(-1), 交換一下行即得
1 0 -1 0 4
0 1 -1 0 3
0 0 0 1 -3
0 0 0 0 0
注(*): 也可以用a11=2 化a31=4 為0
關鍵是要看這樣處理有什麼好處
若能在化a31為0的前提下, a32化成了1, 那就很美妙了.
注(**): r1+r4 就是利用了1,4行資料的特點,先處理了a12.
總之, 要注意觀察元素的特殊性靈活處理.
低邊驅動與高邊驅動
高邊指電源,低邊指地,高邊驅動和低邊驅動是用來除錯功率的,以驅動負載。高邊驅動 開關位於電源和負載之間 低邊驅動 開關位於負載和地之間。通俗的來講,高邊驅動 hsd 是指通過直接在用電器或者驅動裝置前通過在電源線閉合開關來實現驅動裝置的使能,而低邊驅動 lsd 則是通過在用電器或者驅動裝置後,通過閉...
初等數論 1 1 數和序列
定義 整數集合z z z 公理 良序性質 the well ordering property 每個非空的正整數集合都有乙個最小元.注意z z沒有良序性質.定義 有理數集合q m in z,n in z n neq0 q 練習 證明2 sqrt 2 是無理數.證明 假設2 sqrt 2 是有理數,則...
高數 高數B模擬試卷
高數b 模擬試卷 一 選擇題 滿分20分 本大題共有5個小題,每小題4分,在每小題給出的四個選型中,只有一項符合題目要求,把所選項前的字母填在題目後的括號內.1.設 f x x0 sintdt 則f f 2 a.1b.1c.cos1d.1 cos1.2.limx 0x2sin1x sinx a.1b...