首先來看看梯度下降的乙個直觀的解釋。比如我們在一座大山上的某處位置,由於我們不知道怎麼下山,於是決定走一步算一步,也就是在每走到乙個位置的時候,求解當前位置的梯度,沿著梯度的負方向,也就是當前最陡峭的位置向下走一步,然後繼續求解當前位置梯度,向這一步所在位置沿著最陡峭最易下山的位置走一步。這樣一步步的走下去,一直走到覺得我們已經到了山腳。當然這樣走下去,有可能我們不能走到山腳,而是到了某乙個區域性的山峰低處。
從上面的解釋可以看出,梯度下降不一定能夠找到全域性的最優解,有可能是乙個區域性最優解。當然,如果損失函式是凸函式,梯度下降法得到的解就一定是全域性最優解。
梯度下降演算法 梯度下降演算法為何叫梯度下降?
首先,我們知道乙個演算法的名字可以很好地去解釋乙個演算法,那麼梯度下降演算法是什麼呢?很明顯的,就是用梯度這個工具來解決問題的一種演算法。解決什麼問題呢?如何在乙個函式曲面的某一點,找到乙個函式值變化最大的方向。比如 我們站在山上的某一點,我們想要以最快的速度上山,但是我們的步子大小是一定的,那麼最...
梯度下降演算法 梯度下降演算法公式推導
場景假設 梯度下降法的基本思想可以模擬為乙個下山的過程。假設這樣乙個場景 乙個人被困在山上,需要從山上下來 找到山的最低點 但此時山上的濃霧很大,導致可視度很低 因此,下山的路徑就無法確定,必須利用自己周圍的資訊一步一步地找到下山的路。這個時候,便可利用梯度下降演算法來幫助自己下山。怎麼做呢,首先以...
梯度下降演算法
機器學習在這幾年得到快速發展,乙個很重要的原因是 large dataset 大規模資料 這節課就來介紹用機器學習演算法處理大規模資料的問題。關於資料的重要性,有一句話是這麼說的 it s not who has the bestalgorithmthat wins.it s who has the...