一、
1、感知機可以描述為乙個線性方程,用python的偽**可表示為:
sum(weight_i * x_i) + bias -> activation #activation表示啟用函式,x_i和weight_i是分別為與當前神經元連線的其它神經元的輸入以及連線的權重。bias表示當前神經元的輸出閥值(或稱偏置)。箭頭(->)左邊的資料,就是啟用函式的輸入
2、定義啟用函式f:
def func_activator(input_value):
return 1.0 if input_value >= 0.0 else 0.0
二、感知機的構建
class perceptron(object):
def __init__(self, input_para_num, acti_func):
self.activator = acti_func
self.weights = [0.0 for _ in range(input_para_num)]
def __str__(self):
return 'final weights\n\tw0 = \n\tw1 = \n\tw2 = ' \
.format(self.weights[0],self.weights[1],self.weights[2])
def predict(self, row_vec):
act_values = 0.0
for i in range(len(self.weights)):
act_values += self.weights [ i ] * row_vec [ i ]
return self.activator(act_values)
def train(self, dataset, iteration, rate):
for i in range(iteration):
for input_vec_label in dataset:
prediction = self.predict(input_vec_label)
self._update_weights(input_vec_label,prediction, rate)
def _update_weights(self, input_vec_label, prediction, rate):
delta = input_vec_label[-1] - prediction
for i in range(len(self.weights):
self.weights[ i ] += rate * delta * input_vec_label[ i ]
def func_activator(input_value):
return 1.0 if input_value >= 0.0 else 0.0
def get_training_dataset():
dataset = [[-1, 1, 1, 1], [-1, 0, 0, 0], [-1, 1, 0, 0], [-1, 0, 1, 0]]
return dataset
def train_and_perceptron():
p = perceptron(3, func_activator)
dataset = get_training_dataset()
return p
if __name__ == '__main__':
and_prerception = train_and_perceptron
print(and_prerception)
print('1 and 1 = %d' % and_perception.predict([-1, 1, 1]))
print('0 and 0 = %d' % and_perception.predict([-1, 1, 1]))
print('1 and 0 = %d' % and_perception.predict([-1, 1, 1]))
print('0 and 1 = %d' % and_perception.predict([-1, 1, 1]))
基於sklearn的感知機python3
首先,本文還是選用python裡面自帶的digits資料集 from sklearn.datasets import load digits digits load digits 資料標準化 from sklearn.preprocessing import standardscaler scale...
python實現感知機
import numpy as np 定義啟用函式 def acti fun x return 1 if x 0 else 0 建立感知器類 class perception object 初始化權重 def init self self.weights 0 self.bias 1 定義訓練函式,包...
python實現AND感知機
and感知機通過訓練後,可以進行邏輯 與 的運算。例如 當輸入 1,1時,輸出為1 輸入1,0時,輸出為0。通過上圖,我們可以發現 0,0 0,1 1,0 這三個點數表示輸出為0,而點 1,1 表示輸出為1,所以我們可以近似找到一條直線將輸出為0的點與輸出為1的點分隔開。我們可以通過不斷訓練係數 即...