時間限制:3000 ms | 記憶體限制:65535 kb
難度:3
描述將正整數n表示成一系列正整數之和:n=n1+n2+…+nk,
其中n1≥n2≥…≥nk≥1,k≥1。
正整數n的這種表示稱為正整數n的劃分。求正整數n的不
同劃分個數。
例如正整數6有如下11種不同的劃分:
6; 5+1;
4+2,4+1+1;
3+3,3+2+1,3+1+1+1;
2+2+2,2+2+1+1,2+1+1+1+1;
1+1+1+1+1+1。
輸入第一行是測試資料的數目m(1<=m<=10)。以下每行均包含乙個整數n(1<=n<=10)。
輸出輸出每組測試資料有多少種分法。
樣例輸入
1樣例輸出6
11**
[苗棟棟]原創
//母函式公式為:g(x)=(1+x+x^2+x^3+x^4+......)*(1+x^2+x^4+x^6+......)*(1+x^3+x^6+x^9+......)*......//a[i]為第一項中的元素,b[i]第二項,陣列中存入的都是係數,每次列舉出所有的係數
//但是大於n的都要捨去
#include#includeint a[12],b[12];
int main()
for(int i=2;i<=n;i++)//共有n-1個多項式
}for(int j=0;j<=n;j++)//將新得到的資料重新存入到a中
}printf("%d\n",a[n]);
} return 0;
}
nyoj 90 整數劃分
整數劃分問題是演算法中的乙個經典命題之一,有關這個問題的講述在講解到遞迴時基本都將涉及。所謂整數劃分,是指把乙個正整數n寫成如下形式 n m1 m2 mi 其中mi為正整數,並且1 mi n 則為n的乙個劃分。如果中的最大值不超過m,即max m1,m2,mi m,則稱它屬於n的乙個m劃分。這裡我們...
NYOJ 90整數劃分
時間限制 3000 ms 記憶體限制 65535 kb 難度 3 描述 將正整數n表示成一系列正整數之和 n n1 n2 nk,其中n1 n2 nk 1,k 1。正整數n的這種表示稱為正整數n的劃分。求正整數n的不 同劃分個數。例如正整數6有如下11種不同的劃分 6 5 1 4 2,4 1 1 3 ...
NYOJ 90 整數劃分
時間限制 3000 ms 記憶體限制 65535 kb 難度 3 輸入第一行是測試資料的數目m 1 m 10 以下每行均包含乙個整數n 1 n 10 輸出輸出每組測試資料有多少種分法。樣例輸入 1 6樣例輸出 11描述 將正整數n表示成一系列正整數之和 n n1 n2 nk,其中n1 n2 nk 1...