題目描述:
給出集合 [1,2,3,…,n],其所有元素共有 n! 種排列。
按大小順序列出所有排列情況,並一一標記,當 n = 3 時, 所有排列如下:
「123」
「132」
「213」
「231」
「312」
「321」
給定 n 和 k,返回第 k 個排列。
說明:
給定 n 的範圍是 [1, 9]。
給定 k 的範圍是[1, n!]。
示例 1:
輸入: n = 3, k = 3
輸出: 「213」
示例 2:
輸入: n = 4, k = 9
輸出: 「2314」
方法1:
主要思路:
(1)根據 k 的大小,模擬正常的人為的排序方式;
class
solution
return res;
} string getpermutation
(int n,
int k)
--k;
//初始的序列為第乙個
string res;
while
(n)//找出當前需要比較的階乘
int count=
multi
(n-1);
int i=k/count;
//找出當前需要壓入的字元
res+
=str[i]
; str.
erase
(str.
begin()
+i);
//去除已經使用過的字元
k=k%count;
//找出剩下的是第幾個
--n;
//減小數量
}return res;}}
;
60 第k個排列
給出集合 1,2,3,n 其所有元素共有 n 種排列。按大小順序列出所有排列情況,並一一標記,當 n 3 時,所有排列如下 123 132 213 231 312 321 給定 n 和 k,返回第 k 個排列。說明 示例 1 輸入 n 3,k 3 輸出 213 示例 2 輸入 n 4,k 9 輸出 ...
60 第k個排列
給出集合 1,2,3,n 其所有元素共有 n 種排列。按大小順序列出所有排列情況,並一一標記,當n 3時,所有排列如下 123 132 213 231 312 321 給定n和k,返回第k個排列。說明 輸入 n 3,k 3 輸出 213 輸入 n 4,k 9 輸出 2314 class soluti...
60 第k個排列
給出集合 1,2,3,n 其所有元素共有 n 種排列。按大小順序列出所有排列情況,並一一標記,當 n 3 時,所有排列如下 123 132 213 231 312 321 給定 n 和 k,返回第 k 個排列。說明 給定 n 的範圍是 1,9 給定 k 的範圍是 1,n 示例 1 輸入 n 3,k ...