l2 regularization(權重衰減)
c0代表原始的代價函式,後面那一項就是l2正則化項,它是這樣來的:所有引數w的平方的和,除以訓練集的樣本大小n。λ就是正則項係數,權衡正則項與c0項的比重。另外還有乙個係數1/2,1/2經常會看到,主要是為了後面求導的結果方便,後面那一項求導會產生乙個2,與1/2相乘剛好湊整。
l2正則化項是怎麼避免overfitting的呢?我們推導一下看看,先求導:
可以發現l2正則化項對b的更新沒有影響,但是對於w的更新有影響:
在不使用l2正則化時,求導結果中w前係數為1,現在w前面係數為 1−ηλ/n ,因為η、λ、n都是正的,所以1−ηλ/n小於1,它的效果是減小w,這也就是權重衰減(weight decay)的由來。當然考慮到後面的導數項,w最終的值可能增大也可能減小。
另外,需要提一下,對於基於mini-batch的隨機梯度下降,w和b更新的公式跟上面給出的有點不同:
對比上面w的更新公式,可以發現後面那一項變了,變成所有導數加和,乘以η再除以m,m是乙個mini-batch中樣本的個數。
到目前為止,我們只是解釋了l2正則化項有讓w「變小」的效果,但是還沒解釋為什麼w「變小」可以防止overfitting?乙個所謂「顯而易見」的解釋就是:更小的權值w,從某種意義上說,表示網路的複雜度更低,對資料的擬合剛剛好(這個法則也叫做奧卡姆剃刀),而在實際應用中,也驗證了這一點,l2正則化的效果往往好於未經正則化的效果。當然,對於很多人(包括我)來說,這個解釋似乎不那麼顯而易見,所以這裡新增乙個稍微數學一點的解釋(引自知乎):
過擬合的時候,擬合函式的係數往往非常大,為什麼?如下圖所示,過擬合,就是擬合函式需要顧忌每乙個點,最終形成的擬合函式波動很大。在某些很小的區間裡,函式值的變化很劇烈。這就意味著函式在某些小區間裡的導數值(絕對值)非常大,由於自變數值可大可小,所以只有係數足夠大,才能保證導數值很大。
而正則化是通過約束引數的範數使其不要太大,所以可以在一定程度上減少過擬合情況
向量的L2範數求導
回歸中最為基礎的方法,最小二乘法.begin j frac vec right quad end begin vec x x 1,cdots,x n vec x p left sum m right frac,space p infty end l 2 範數具體為 vec x 2 x 1 2 cdo...
L1範數與L2範數對比
l0範數是指向量中非0的元素的個數。l0範數很難優化求解 l1範數是指向量中各個元素絕對值之和 l2範數是指向量各元素的平方和然後求平方根 l1範數可以進行特徵選擇,即讓特徵的係數變為0.l2範數可以防止過擬合,提公升模型的泛化能力,有助於處理 condition number不好下的矩陣 資料變化...
L1和L2正規化 範數
範數是形容乙個公式具有廣泛性,類似於有人指桑罵槐但不說名字,但一旦說了名字這句話就有意義了.l1l2都從l p範數中得來,1和2就是p 1和p 2的結果.雖然p可以隨便取,但有被人提到的也只有0,1,2這三個值.l0範數僅靠p 0代入l p範數是很迷惑的,既有0次方也有0次開方,數學上的表示就很怪,...