ECCV 2020 超解析度方向上接收文章總結

2021-10-08 07:45:46 字數 3665 閱讀 4436

**題目

**方向

**鏈結

源**相關資料

across scales & across dimensions: temporal super-resolution using deep internal learning

運動模糊超分辨?

鏈結comming soon

鏈結component divide-and-conquer for real-world image super-resolution

真實世界影象超分辨(分治方法)

cross-attention in coupled unmixing nets for unsupervised hyperspectral super-resolution

利用光譜***(沒見過的方向)

鏈結鏈結

face super-resolution guided by 3d facial priors

人臉超分辨

fast adaptation to super-resolution networks via meta-learning

影象超分辨+其他方法(元學習)

鏈結journey towards tiny perceptual super-resolution

小型感知sr模型,模型小型化,移動端部署

鏈結latticenet: towards lightweight image super-resolution with lattice block

輕量級sr模型

learning with privileged information for efficient image super-resolution

影象超分辨

鏈結鏈結

mucan: multi-correspondence aggregation network for video super-resolution

pams: quantized super-resolution via parameterized max scale

輕量化?(沒找到**,所以不太清楚)

plugnet: degradation aware scene text recognition supervised by a pluggable super-resolution unit

文字超分辨

鏈結scene text image super-resolution in the wild

文字超分辨(戶外場景)

鏈結鏈結

single image super-resolution via a holistic attention network

影象超分辨(網路結構方面的工作)

鏈結spatial-angular interaction for light field image super-resolution

新型光場影象超分辨演算法

鏈結鏈結

srflow: learning the super-resolution space with normalizing flow

影象超分辨(超分空間)

鏈結鏈結

stochastic frequency masking to improve super-resolution and denoising networks

影象超分辨

鏈結texture hallucination for large-factor painting super-resolution

影象超分辨(繪畫場景)

鏈結towards content-independent multi-reference super-resolution: adaptive pattern matching and feature aggregation

影象超分辨(與內容無關的影象超分)

varsr: variational super-resolution network for very low resolution images

影象超分辨(超低解析度場景)

video super-resolution with recurrent structure-detail network

zero-shot image super-resolution with depth guided internal degradation learning

影象超分辨(對zero-shot方法的改進)

invertible image rescaling

影象超分辨(可逆影象縮放)

鏈結鏈結

鏈結**題目

狀態across scales & across dimensions: temporal super-resolution using deep internal learning

component divide-and-conquer for real-world image super-resolution

cross-attention in coupled unmixing nets for unsupervised hyperspectral super-resolution

face super-resolution guided by 3d facial priors

fast adaptation to super-resolution networks via meta-learning

learning with privileged information for efficient image super-resolution

pams: quantized super-resolution via parameterized max scale

plugnet: degradation aware scene text recognition supervised by a pluggable super-resolution unit

scene text image super-resolution in the wild

single image super-resolution via a holistic attention network

spatial-angular interaction for light field image super-resolution

srflow: learning the super-resolution space with normalizing flow

stochastic frequency masking to improve super-resolution and denoising networks

texture hallucination for large-factor painting super-resolution

towards content-independent multi-reference super-resolution: adaptive pattern matching and feature aggregation

varsr: variational super-resolution network for very low resolution images

zero-shot image super-resolution with depth guided internal degradation learning

invertible image rescaling

超解析度參考

數字影象的儲存 影象四種型別 按照顏色 灰度劃分 影象超解析度及相關知識 簡介 超解析度知識筆記 學習筆記之 基於深度學習的影象超解析度重構 帶打包 兩篇乾貨滿滿的csdn博文 從srcnn到edsr,總結深度學習端到端超解析度方法發展歷程 影象超分辨之zssr 基於dl的超解析度 去噪近幾年 一篇...

DRRN超解析度

全名 image super resolution via deep recursive residual network code 這是一篇cvpr2017的關於影象超解析度的文章,相較於vdsr取得了更好的結果,從結構上看,還是之前的基調,更深的網路結構 52層 同時採取了遞迴操作,遞迴模組中存...

超解析度重建總結

1.srcnn 2,3改進 開山之作,三個卷積層,輸入影象是低解析度影象經過雙三次 bicubic 插值和高解析度乙個尺寸後輸入cnn。影象塊的提取和特徵表示,特徵非線性對映和最終的重建。使用均方誤差 mse 作為損失函式。2.fsrcnn 特徵提取 低解析度影象,選取的核9 9設定為5 5。收縮 ...