乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法(先後次序不同算不同的結果)。
看過有網上有特解的方法,但是我感覺不合適,因為想解法應該是找到普遍的規律才應該算是中規中矩。當不知道解題思路的就可以先將前幾次,比如說有 1,2,3,4,5級台階的跳法算出來,比較簡單還是可以手算的,就應該發現規律了。12
3456
...n跳法1
2358
13...
f(n-1)+
f(n-2)
通過前面的跳法數,可以發現規律,f(n) = f(n-1) + f(n-2)
演算法 青蛙跳台階
1.乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法。典型的斐波那契數列 2.青蛙跳台階plus版本 乙隻青蛙一次可以跳上1級台階,也可以跳上2級 它也可以跳上n級。求該青蛙跳上乙個n級的台階總共有多少種跳法。關於本題,前提是n個台階會有一次n階的跳法。分析如...
青蛙跳台階
乙隻青蛙一次可以跳上1級台階,也可以跳上2級。求該青蛙跳上乙個n級的台階總共有多少種跳法。解題思路 1 如果兩種跳法,1階或者2階,那麼假定第一次跳的是一階,那麼剩下的是n 1個台階,跳法是f n 1 2 假定第一次跳的是2階,那麼剩下的是n 2個台階,跳法是f n 2 3 總跳法為 f n f n...
青蛙跳台階
之前面試遇到了這種題目,不會,後來搜尋了一下,感覺分析的很好 青蛙跳乙個n階的台階,每次可以跳1階或者2階,求跳完n階y有多少種方法。分析 n 1,f n 1 n 2,f n 2 n 3,f n 3 n 4,f n 5 可以發現 f n f n 1 f n 2 由此也可以推想 比如要跳到第4階樓梯上...