1 手寫kemeans
流程:
手寫**:
f:\桌面\rna-seq1\leetcode\10-面試真題\6- 位元組跳動-手寫kmeans.py
2 k 如何確定:
t-sne視覺化和手肘法,k值所決定的是在該聚類演算法中,所要分配聚類的簇的多少,kmeans 演算法對初始值敏感,相同的k,選的點不同,會影響演算法的聚類效果和迭代次數。
1 計算出不同k 下演算法的bic和aic值,bic或aic越小,選擇該k 值,
2 使用canopy 演算法進行粗略的聚類,產生的簇的個數作為kmeans 演算法的k 值
3 使用x-menas 方法結合bic 準則取判定簇的個數,也就是k 值。
4 使用輪廓係數來確定,選擇是係數較大對應的k 值
5 使用交叉驗證來確定目標函式(距中心距離的平方差)變小的k 值
6 用層次聚類,視覺化後認為地觀察認為聚為幾類。
機器學習 K means
這個演算法主要是乙個迭代的過程 1.在乙個資料集中隨機選擇k個聚類中心 2.按照離各個聚類中心的遠近來將資料集中的資料劃分到各個分類中。3.將各個分類中資料點的平均座標來作為新的聚類中心 一直重複2 3過程直到各個分類中的資料點的平均座標正好等於聚類中心的座標為止。k means演算法也有可能會出現...
機器學習 K means實踐
這兩天跟著 機器學習實戰 那本書學習了一下聚類方法中的k means演算法。在本篇文章中主要介紹下實踐中遇到的問題以及演算法的主要思想。ok,here we go!k means演算法思想 我們在日常生活中經常會遇到將某些相似的事物進行聚類,而如何讓計算機幫助我們進行自動的分類呢?k means是經...
機器學習(二十) K means
k means是乙個非常經典的非監督學習聚類演算法,因為資料集不帶有標籤,我們只去 資料所表現出的某種結構。k means演算法非常簡單,用下面一張圖就可以表示了。具體步驟 1.人為選取k值 即要聚類的個數 2.隨機選取k個資料點作為k個初始中心 centroid 並標記為1到k。3.對每個資料點 ...