在matlab中驗證clark和park變換後的曲線以及幅值。
關於變換的原理請參考:
當恆幅值變換時:
程式中 conamp = 1, 恆幅值輸出,iq的幅值和ia幅值相等。
程式中 conamp = 0, 恆功率輸出,iq的幅值和ia幅值相等。
%電機abc模型推導dq模型過程中的公式驗證
%恆功率模型,恆幅值模型只需要結果乘以sqrt(2)/sqrt(3)
j = 0;
conamp = 0;
for i=0.0:0.001*pi:4*pi
j = j+1;
ia(j) = 10 * cos(i);
ib(j) = 10 * cos(i-2/3*pi);
ic(j) = 10 * cos(i+2/3*pi);
conpower_c3sto2s = sqrt(2/3) * [1 -1/2 -1/2; 0 sqrt(3)/2 -sqrt(3)/2];
conpower_c2sto3s = sqrt(2/3) * [1 0; -1/2 sqrt(3)/2; -1/2 -sqrt(3)/2];
aconamp_c3sto2s = (2/3) * [1 -1/2 -1/2; 0 sqrt(3)/2 -sqrt(3)/2];
conamp_c2sto3s = [1 0; -1/2 sqrt(3)/2; -1/2 -sqrt(3)/2];
conamp_c3sto2r = (2/3) * [cos(i) cos(i-2/3*pi) cos(i+2/3*pi);-sin(i) -sin(i-2/3*pi) -sin(i+2/3*pi)];
conamp_c2rto3s = [cos(i) -sin(i);cos(i-2/3*pi) -sin(i-2/3*pi);cos(i+2/3*pi) -sin(i+2/3*pi)];
conpower_c3sto2r = sqrt(2/3)*[cos(i) cos(i-2/3*pi) cos(i+2/3*pi);-sin(i) -sin(i-2/3*pi) -sin(i+2/3*pi)];
conpower_c2rto3s = sqrt(2/3)*[cos(i) -sin(i);cos(i-2/3*pi) -sin(i-2/3*pi);cos(i+2/3*pi) -sin(i+2/3*pi)];
conpower_c2sto2r = sqrt(2) * [sin(i+pi/3) sin(i); cos(i+pi/3) cos(i)];
if(conamp == 0)
ialpha(j) = conpower_c3sto2s(1,:) * [ia(j);ib(j);ic(j)];
ibeta(j) = conpower_c3sto2s(2,:) * [ia(j);ib(j);ic(j)];
id(j) = conpower_c3sto2r(1,:) * [ia(j);ib(j);ic(j)];
iq(j) = conpower_c3sto2r(2,:) * [ia(j);ib(j);ic(j)];
id_2(j) = conpower_c2sto2r(1,:) * [ia(j);ib(j)];
iq_2(j) = conpower_c2sto2r(2,:) * [ia(j);ib(j)];
else
ialpha(j) = conamp_c3sto2s(1,:) * [ia(j);ib(j);ic(j)];
ibeta(j) = conamp_c3sto2s(2,:) * [ia(j);ib(j);ic(j)];
id(j) = conamp_c3sto2r(1,:) * [ia(j);ib(j);ic(j)];
iq(j) = conamp_c3sto2r(2,:) * [ia(j);ib(j);ic(j)];
end%a=[1 -0.5 -0.5;-0.5 1 -0.5;-0.5 -0.5 1];%磁鏈方程
%c32*a*c23
%b=[cos(i);cos(i-2/3*pi);cos(i+2/3*pi)];%磁鏈方程
%c32*b
%c=[0 1 -1;-1 0 1;1 -1 0];%轉矩方程
%c32*c*c23
t(j) = i;
endsubplot(3,1,1);
plot(t,ia,'b', t,ib,'r', t,ic,'g')
title('ia,ib,ic')
subplot(3,1,2);
plot(t,ialpha,'k', t,ibeta,'r')
title('ialpha,ibeta')
subplot(3,1,3);
plot(t,id,'b', t,iq,'r')
title('id,iq')
實際電路中有阻塞幅值和非阻塞幅值?
前言 最近群內同學問到 啥是阻塞,啥是非阻塞。實際電路中有這玩意兒嗎?個人覺得阻塞非阻塞是 電路下的描述,實際電路中是沒有這個描述的。實際的電路中只有組合邏輯和時序邏輯,不可能存在誰阻塞了誰。只是 中需要特別注意。按照書上的描述 阻塞相當於軟體中的順序執行,非阻塞相當於併發執行。模擬為阻塞就是乙個人...
幾種恆流電路的分析和應用
恆流電路在硬體電路設計中應用十分廣泛,例如用於可變電阻的阻值檢測,led恆流驅動等。恆流電路分為電流源和電流井,顧名思義就是根據電流的流向不同劃分的,實質上也可以認為是根據恆流電路與負載的共電位關係劃分。根據大家的習慣,電流井電路是比較容易分析的,但是因為電流井通常把取樣和限流電路放在靠近地的一側,...