摘自piaocoder的部落格:
首先定義mex(minimal excludant)運算,這是施加於乙個集合的運算,表示最小的不屬於這個集合的非負整數。例如
mex=3、mex=0、mex{}=0。
對於乙個給定的有向無環圖,定義關於圖的每個頂點的sprague-grundy函式g如下:g(x)=mex,這裡的g(x)即
sg[x]。
例如:取石子問題,有1堆n個的石子,每次只能取個石子,先取完石子者勝利,那麼各個數的sg值為多少?
sg[0]=0,f=,
x=1時,可以取走1-f個石子,剩餘個,mex=,故sg[1]=1;
x=2時,可以取走2-f個石子,剩餘個,mex=,故sg[2]=0;
x=3時,可以取走3-f個石子,剩餘個,mex=,故sg[3]=1;
x=4時,可以取走4-f個石子,剩餘個,mex=,故sg[4]=2;
x=5時,可以取走5-f個石子,剩餘個,mex=,故sg[5]=3;
以此類推.....
x 0 1 2 3 4 5 6 7 8....
sg[x] 0 1 0 1 2 3 2 0 1....
計算從1-n範圍內的sg值。
f(儲存可以走的步數,f[0]表示可以有多少種走法)
f需要從小到大排序
1.可選步數為1~m的連續整數,直接取模即可,sg(x) = x % (m+1);
2.可選步數為任意步,sg(x) = x;
3.可選步數為一系列不連續的數,用getsg()計算
#includeusing namespace std;
const int n=1e5+10;
int f[3]=;
int sg[n];
int hash[n];
void getsg(int n)}}
}int main()
博弈論 (SG函式)
首先定義mex minimal excludant 運算,這是施加於乙個集合的運算,表示最小的不屬於這個集合的非負整數。例如mex 3 mex 0 mex 0。對於乙個給定的有向無環圖,定義關於圖的每個頂點的sprague grundy函式g如下 g x mex,這裡的g x 即sg x 例如 取石...
博弈論SG函式
有n堆石子,每次可以從第1堆石子裡取1顆 2顆或3顆,可以從第2堆石子裡取奇數顆,可以從第3堆及以後石子裡取任意顆 這時看上去問題複雜了很多,但相信你如果掌握了本節的內容,類似的千變萬化的問題都是不成問題的。現在我們來研究乙個看上去似乎更為一般的遊戲 給定乙個有向無環圖和乙個起始頂點上的一枚棋子,兩...
博弈論 SG函式
學習博弈論不得不提一哈sg函式 關於sg函式的一些概念就不多說了 說下我自己的理解sg函式記錄為0的是p狀態 不為0記錄的是n狀態 相當於有個週期再迴圈 p n狀態輪番出現 sg模板 include include include define maxn 1000 using namespace s...