原碼 補碼和反碼

2021-09-01 03:52:47 字數 2975 閱讀 1473

數在計算機中是以二進位制形式表示的。 

數分為有符號數和無符號數。 

原碼、反碼、補碼都是有符號定點數的表示方法。 

乙個有符號定點數的最高位為符號位,0是正,1是副。 

以下都以8位整數為例, 

原碼就是這個數本身的二進位制形式。 

例如0000001 就是+1

1000001 就是-1 

正數的反碼和補碼都是和原碼相同。 

負數的反碼是將其原碼除符號位之外的各位求反 

[-3]反=[10000011]反=11111100 

負數的補碼是將其原碼除符號位之外的各位求反之後在末位再加1。 

[-3]補=[10000011]補=11111101 

乙個數和它的補碼是可逆的。 

為什麼要設立補碼呢? 

第一是為了能讓計算機執行減法: 

[a-b]補=a補+(-b)補 

第二個原因是為了統一正0和負0 

正零:00000000 

負零:10000000 

這兩個數其實都是0,但他們的原碼卻有不同的表示。 

但是他們的補碼是一樣的,都是00000000 

特別注意,如果+1之後有進製的,要一直往前進製,包括符號位!(這和反碼是不同的!) 

[10000000]補 

=[10000000]反+1 

=11111111+1 

=(1)00000000 

=00000000(最高位溢位了,符號位變成了0) 

有人會問 

10000000這個補碼表示的哪個數的補碼呢? 

其實這是乙個規定,這個數表示的是-128 

所以n位補碼能表示的範圍是 

-2^(n-1)到2^(n-1)-1 

比n位原碼能表示的數多乙個

又例:

1011 

原碼:01011 

反碼:01011 //正數時,反碼=原碼 

補碼:01011 //正數時,補碼=原碼 

-1011 

原碼:11011 

反碼:10100 //負數時,反碼為原碼取反 

補碼:10101 //負數時,補碼為原碼取反+1 

0.1101 

原碼:0.1101 

反碼:0.1101 //正數時,反碼=原碼 

補碼:0.1101 //正數時,補碼=原碼 

-0.1101 

原碼:1.1101 

反碼:1.0010 //負數時,反碼為原碼取反 

補碼:1.0011 //負數時,補碼為原碼取反+1

總結:

在計算機內,定點數有3種表示法:原碼、反碼和補碼

所謂原碼就是前面所介紹的二進位制定點表示法,即最高位為符號位,「0」表示正,「1」表示負,其餘位表示數值的大小。

反碼表示法規定:正數的反碼與其原碼相同;負數的反碼是對其原碼逐位取反,但符號位除外。

補碼表示法規定:正數的補碼與其原碼相同;負數的補碼是在其反碼的末位加1。

1、原碼、反碼和補碼的表示方法

(1)     原碼:在數值前直接加一符號位的表示法。

例如:       符號位   數值位

[+7]原=    0     0000111   b

[-7]原=    1     0000111   b

注意:a. 數0的原碼有兩種形式:

[+0]原=00000000b     [-0]原=10000000b

b. 8位二進位制原碼的表示範圍:-127~+127

2)反碼:

正數:正數的反碼與原碼相同。

負數:負數的反碼,符號位為「1」,數值部分按位取反。

例如: 符號位    數值位

[+7]反=   0    0000111   b

[-7]反=   1    1111000   b

注意:a. 數0的反碼也有兩種形式,即

[+0]反=00000000b

[- 0]反=11111111b

b. 8位二進位制反碼的表示範圍:-127~+127

3)補碼的表示方法

1)模的概念:把乙個計量單位稱之為模或模數。例如,時鐘是以12進製進行計數迴圈的,即以12為模。在時鐘上,時針加上(正撥)12的整數字或減去(反撥)12的整數字,時針的位置不變。14點鐘在捨去模12後,成為(下午)2點鐘(14=14-12=2)。從0點出發逆時針撥10格即減去10小時,也可看成從0點出發順時針撥2格(加上2小時),即2點(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可對映為+2。由此可見,對於乙個模數為12的迴圈系統來說,加2和減10的效果是一樣的;因此,在以12為模的系統中,凡是減10的運算都可以用加2來代替,這就把減法問題轉化成加法問題了(注:計算機的硬體結構中只有加法器,所以大部分的運算都必須最終轉換為加法)。10和2對模12而言互為補數。

同理,計算機的運算部件與暫存器都有一定字長的限制(假設字長為8),因此它的運算也是一種模運算。當計數器計滿8位也就是256個數後會產生溢位,又從頭開始計數。產生溢位的量就是計數器的模,顯然,8位二進位制數,它的模數為28=256。在計算中,兩個互補的數稱為「補碼」。

2)補碼的表示: 正數:正數的補碼和原碼相同。

負數:負數的補碼則是符號位為「1」,數值部分按位取反後再在末位(最低位)加1。也就是「反碼+1」。

例如:   符號位 數值位

[+7]補=    0    0000111   b

[-7]補=    1    1111001   b

補碼在微型機中是一種重要的編碼形式,請注意:

a.採用補碼後,可以方便地將減法運算轉化成加法運算,運算過程得到簡化。正數的補碼即是它所表示的數的真值,而負數的補碼的數值部份卻不是它所表示的數的真值。採用補碼進行運算,所得結果仍為補碼。

b.與原碼、反碼不同,數值0的補碼只有乙個,即        [0]補=00000000b。

c.若字長為8位,則補碼所表示的範圍為-128~+127;進行補碼運算時,應注意所得結果不應超過補碼所能表示數的範圍。

原碼 反碼和補碼

數值有正負之分 計算機就用乙個數的最高位存放符號 0為正 1為負 這就是機器數的原碼了 假設機器能處理的位數為 8.即字長為 1byte,原碼能表示數值的範圍為 127 0 0 127 共256個.有了數值的表示方法就可以對數進行算術運算 但是很快就發現用帶符號位的原碼進行乘除運算時結果正確 而在加...

原碼 反碼 和 補碼。

這裡只講下自己對反碼的理解。大家都知道使用反碼表示負數有兩個優點,1.可以使得減法可以和加法一樣。2.符號位也參與了運算。那這是為什麼呢?下面可以進行一些簡單的數學推導 根據反碼定義,對於負數,反碼是除符號為以外取反 1。例如,4 變換步驟如下。a 4 0 000 0100 b 取反 0 111 1...

原碼 補碼和反碼

1 原碼表示法 原碼表示法是機器數的一種簡單的表示法。其符號位用0表示正號,用 表示負號,數值一般用二進位制形式表示。設有一數為x,則原碼表示可記作 x 原。例如,x1 1010110 x2 一1001010 其原碼記作 x1 原 1010110 原 01010110 x2 原 1001010 原 ...